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1
Introduction

We are searching for some kind of harmony between two intangibles: a

form which we have not yet designed and a context which we cannot prop-

erly describe.
– Christopher Alexander

Such as possess the gifts of fortune are easily deprived of them: but when

learning is once fixed in the mind, no age removes it, nor is its stability

affected during the whole course of life.
– Vitruvius

1.1 Software Engineering

We cannot imagine a world without software anymore. In just a few decades, software

has become ingrained in each aspect of everyday life. Supermarkets use electronic bar

code scanning at the check out. The money that pays the groceries comes out of an

ATM, or even remains in ‘electronic’ form all the time. When our cars break down,

car mechanics first turn to the car’s on-board computer for problem diagnosis before

they even consider lifting the hood. Plain old telephone systems are gradually being

replaced with modern Voice over IP systems that route phone calls over the Internet.

Our stock markets, news outlets, planes and trains, our hospitals, mobile phones, TVs

and DVRs, indeed, our whole environment runs on software.

Software engineering is the discipline of building large-scale software systems.

Within this discipline, a continuous search is going on for better methods and tech-

niques to build better software. This search has led to many approaches that have im-

proved the way in which software is being built (cf. (van Vliet, 2008)). However, even

1



CHAPTER 1. INTRODUCTION

though we have come to rely heavily on software, when compared to other engineering

disciplines software engineering is still relatively young.

At the 2008 International Conference on Software Engineering, we celebrated the

40th anniversary1 of the Garmisch/NATO conference on Software Engineering, which

is regarded as the place at which the idea of ‘software engineering’ was born. Peter

Naur, one of the Garmisch/NATO attendees, said about the topic of ‘engineering’ that

“software designers are in a similar position to architects and civil engineers, partic-

ularly those concerned with the design of large heterogeneous constructions, such as

towns and industrial plants. It therefore seems natural that we should turn to these sub-

jects for ideas about how to attack the design problem.” (Naur and Randell, 1968). This

analogy should not be taken to the extreme, however, since there are many differences

between software engineering and civil engineering2.

Over the past 40 years, much of the software design landscape has changed. Mod-

ern software development increasingly often takes place in a geographically distributed

context involving multiple development groups with different backgrounds and roles.

Part or most of a software system is provided through COTS components, outsourc-

ing, open source, multi-party collaboration and distributed development teams. Many

of these changes were probably inconceivable for the software engineering pioneers.

Nevertheless, many of the topics they discussed then and there still bear relevance to

today’s world.

1.2 Software Architecture

An exponent of the analogy between civil engineering and software engineering is

the emergence of a subdiscipline which has become known as ‘software architecture’.

Software architecture as we know it today can be traced back to studies by Dijkstra and

Parnas in the late 1960s, early 1970s. The general idea behind software architecture

can be paraphrased as “Structure is important, and getting the structure right carries

benefits.” (Clements, online).

The notion of a software ‘architecture’ is one of the key technical advances in the

field of software engineering over the last decades. The software architecture plays an

increasingly important role to manage the complex interactions and dependencies in

large-scale software development.

1Compare this with the 2000 year old treatise De Architectura (‘On architecture’) by the Roman writer,

architect, and engineer Vitruvius Pollo (ca. 80 - ca. 20 BC).
2To paraphrase Bertrand Meyer at the 2008 ICSE conference: “You cannot fall off the drawing of a

bridge”, alluding to the lack of a true distinction between specification and implementation in software

engineering.
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The idea of software architecture avant la lettre is clearly present in several discus-

sions at the Garmisch/NATO conference, especially those that center around the design

of software. However, it was not until much later that attempts were made to properly

define what constitutes software architecture.

In their seminal work on the foundations for the study of software architecture,

Perry and Wolf (1992) define software architecture as:

Software Architecture = { Elements, Form, Rationale }

Perry and Wolf describe architectural elements as components and connectors, ar-

chitectural form as constraints on these elements, and rationale as the motivation for the

architectural choices made. In the years thereafter, many other definitions have been

coined. Many of these definitions take from Perry and Wolf’s the central notion of

components and connectors (cf. (Software Engineering Institute, online)). For exam-

ple, Shaw and Garlan (1996) state that “software architecture involves the description

of elements from which systems are built, interactions among those elements, patterns

that guide their composition and constraints on these patterns”.

Over the years, much progress has been made in describing architectures in terms of

components and connectors. For instance, modeling languages and notations have been

proposed to improve stakeholder communication; patterns, vocabularies and product

lines have been created to allow reuse; and the use of reference architectures for com-

plex domains has become common practice. Most of these advancements, however,

focus on the resulting architecture – the ‘end-product’ – and leave the decision making

that has led to this architecture implicit. Still, it is through this decision making that

the architect weighs stakeholder requirements and concerns, identifies constraints, and

outlines the eventual solution. Indeed, according to Bass et al. (2003), one of the rea-

sons software architecture is so important is because “architecture manifests the early

design decisions”.

In short, although considerable progress has been made in describing software ar-

chitectures, we still lack techniques for capturing, representing and maintaining knowl-

edge about software architectures. Consequently, additional – and not exactly quan-

tifiable – costs must be spent each time knowledge has to be transferred within an

organization. Moreover, people have to rethink the reasons why certain decisions have

been made, or why errors occurred, and they have to repeatedly follow the same paths

to achieve similar results. This may result in various problems, including high mainte-

nance costs and high degrees of design erosion (cf. (Bosch, 2004)).

Despite making headway in several other knowledge intensive fields, until recently

knowledge management received little attention in the software architecture field. How-

ever, the software architecture community has begun to recognize that knowledge man-

agement is vital for improving an organization’s architectural capabilities. There has
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been an increased demand for suitable methods, techniques, and tools that support or-

ganizations in capturing and maintaining the details on which key architecture design

decisions are based. Researchers and practitioners have proposed various approaches

to capture and manage architectural design decisions and their rationale (e.g., (Dutoit

and Paech, 2001; van der Ven et al., 2006b; Jansen, 2008)). One of the main objectives

of these approaches is to help making explicit what is known by architects or implicitly

embedded in an architecture. This may include knowledge about the domain analysis,

architectural patterns used, design alternatives evaluated, and assumptions underpin-

ning design decisions. Research pertaining to such architectural knowledge benefits

from related research fields, especially from knowledge management research.

It is within this context of a shifting focus – from architecture as a high-level design

to architecture as a collection of design decisions – that the GRIFFIN project took

place. This thesis is one of its results.

1.3 The GRIFFIN project

The GRIFFIN project has been a research project under the auspices of the Nether-

lands Organisation for Scientific Research (NWO) Jacquard programme on software

engineering research. The project ran from April 2005 until April 2009. Over this four

year time period, two universities and several industrial organizations collaborated to

study architectural knowledge management challenges.

Over the course of the project, about ten organizations in total became involved in

the GRIFFIN project, some of them briefly and some others permanently. The organi-

zations involved range from SMEs to multinationals, and from scientific institutes to IT

service providers. The research consortium commenced with four industrial partners:

∙ RFA, a large software development organization, responsible for development

and maintenance of systems for among others the public sector.

∙ DNV, a company that performs independent software product audits for third

parties.

∙ VCL, a large, multi-site consumer electronics organization where embedded

software is developed in a distributed setting.

∙ PAV, a scientific organization that has to deal with software development projects

spanning a long time frame (up to a period of more than ten years).

The goal of the GRIFFIN project has been to develop notations, tools and associ-

ated methods to extract, represent and use architectural knowledge currently not docu-

mented or represented in the system. A tentative definition for architectural knowledge
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from the start of the project was “the integrated representation of the software archi-

tecture of a software-intensive system (or a family of systems), the architectural design

decisions, and the external context/environment”. Part of the GRIFFIN research con-

sisted of a further refinement of this definition.

The GRIFFIN consortium has been a strong proponent of problem-driven research.

Each of the four industrial partners was assigned a dedicated researcher, who performed

a series of case studies at that organization and addressed concrete research problems

that troubled the organization. Sometimes, these case studies led to iterative refine-

ments of the organization-specific research problems. Other times, parallel research

problems were identified. In each case, we identified a coherent theme of architectural

knowledge management challenges, related to the organization’s core business.

1.4 Outline of this Thesis

The research presented in this thesis has been conducted by two of the GRIFFIN re-

searchers. Each of the researchers was tied to a particular industrial partner, hence

each of the researchers studies architectural knowledge management from a different

perspective. The work by Rik Farenhorst at RFA focused on how architectural knowl-

edge management can support architects in their daily work. The work by Remco de

Boer at DNV, on the other hand, aimed at employing architectural knowledge manage-

ment to support auditors who are objective and independent assessors of the quality of

a software product. Additionally, this thesis reports on joint work by both researchers.

This joint work concerns the development of a general theoretical framework of archi-

tectural knowledge management.

This thesis is divided in three main parts that report on the joint work and individual

studies of both authors, respectively.

∙ Part I: Architectural Knowledge Management. Provides an overview of ar-

chitectural knowledge management issues and practices, and provides a general

model of architectural knowledge upon which the other parts depend.

∙ Part II: Supporting Architects. Studies architectural knowledge management

issues from the perspective of architects. A central theme to this part is how

architectural knowledge can be effectively shared.

∙ Part III: Supporting Auditors. Studies architectural knowledge management

issues from the perspective of auditors. A central theme to this part is how archi-

tectural knowledge relevant to a software product audit can be discovered.
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Part I

Architectural Knowledge

Management

Based on joint work of both authors
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2
Managing Architectural Knowledge

2.1 Introduction

This thesis is about architectural knowlege management, especially about architectural

knowledge management to support architects and auditors. The topic of this thesis

parallels a current shift in the architecture field, in which architecture is less regarded

as components-and-connectors, but more so as the result of a complex knowledge-

intensive task (‘architecting’) that should be supported by knowledge management.

In this part, we examine the state of the art and state of the practice in architectural

knowledge management. This leads to a theoretical framework that serves as the basis

for the subsequent parts, in which we study how to support architects and auditors,

respectively.

2.2 Research Questions

This thesis is about supporting architects and auditors with managing architectural

knowledge. In order to arrive at concrete, usable, and successful approaches to archi-

tectural knowledge management, we first need to know what architectural knowledge

is in the first place. Our first research question is thus:

RQ- I.1 What is architectural knowledge?

After we have gained an understanding of what architectural knowledge is, we can

study how best to manage it. Hence, the second research question is:

RQ- I.2 How can architectural knowledge be managed?
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In the end, however, we are not interested in architectural knowledge management

as a mere theoretical exercise; we aim to explore typical problems and challenges to ar-

chitectural knowledge management in industry. Therefore, our third research question

is:

RQ- I.3 What are typical challenges to architectural knowledge management in prac-

tice?

Answers to these research questions allow us to better define what type of archi-

tectural knowledge management is needed to support architects and auditors. From the

answers to the research questions in this part, we will derive new research questions

which are addressed in Parts II and III of this thesis.

2.3 Research Methods and Methodology

To answer the research questions from §2.2, we employed two main research ap-

proaches: desk research and field research. Desk research, also called secondary

research, consists of investigating and aggregating existing knowledge that has been

published in (scientific) literature. It is therefore typically suitable for research into

the state of the art of a particular field. Field research, on the other hand, is a type of

primary research that takes part outside an academic ‘laboratory’ setting. It is therefore

particularly useful to investigate the current state of the practice, and to identify current

challenges in industrial practice.

We used desk research especially to answer RQ-I.1 and RQ-I.2. We explored the

current state of the art in architectural knowledge management by conducting a sys-

tematic literature review. This review consisted of three stages. In the first stage,

we performed an ad-hoc, preliminary review of architectural knowledge management

strategies. In the second stage, based on a predefined protocol we identified, selected,

and synthesized all studies that define or discuss ‘architectural knowledge’. In the

third stage, we employed social network analysis to identify the communities in which

architectural knowledge plays a role.

We used field research especially to answer RQ-I.3, and partly to answer RQ-I.2.

We followed a typical action research cycle together with the industrial partners of the

GRIFFIN project. This action research cycle consisted of 1) the design of an initial

theory of architectural knowledge, 2) experimentation with this theory in industrial or-

ganizations, 3) identification of mismatches between our theory and industry practice,

4) refinement of the initial theory into a ‘core model’ of architectural knowledge, and

5) characterization of the use of architectural knowledge in industrial organization and

identification of architectural knowledge management challenges.
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2.4 Outline of Part I

The remainder of this part contains two main research chapters, followed by a conclu-

sions chapter.

∙ In Chapter 3 we provide answers to RQ-I.1 (partially) and RQ-I.2. We answer

RQ-I.1 from the perspective of existing literature. We examine how architectural

knowledge is defined in literature and how the different definitions are related.

We answer RQ-I.2 partially from a literature investigation, and partially from our

collaborative research with our industrial partners.

∙ In Chapter 4 we provide answers to RQ-I.1 (partially) and RQ-I.3. Since ex-

isting literature does not provide a single view on architectural knowledge, we

extend the answer to RQ-I.1 by presenting a core model of architectural knowl-

edge. This core model unifies existing, decision-centric models and provides a

common frame of reference regarding what architectural knowledge entails. It

will act as an operationalized definition of architectural knowledge throughout

this thesis. Experimentation with this core model in four industrial organizations

leads to an answer to RQ-I.3. In the remainder of this thesis, we will further

examine two types of challenges: how to support architects and how to support

auditors with architectural knowledge management.

∙ In Chapter 5 we revisit the three research questions and summarize the main

lessons learned in Part I.

2.5 Publications

Most of the material presented in this part of the thesis has been published previously.

The publications on which the chapters in Part I are based are listed in this section.

Parts of Chapter 3, have been published previously as:

∙ Ali Babar, M., R.C. de Boer, T. Dingsøyr, and R. Farenhorst. Architectural

Knowledge Management Strategies: Approaches in Research and Industry. In

2nd Workshop on SHAring and Reusing architectural Knowledge Architecture,

Rationale, and Design Intent (SHARK/ADI’07), page 2. IEEE Computer Soci-

ety, 2007.

∙ de Boer, R.C. and R. Farenhorst. In Search of Architectural Knowledge. In

3rd international workshop on SHAring and Reusing architectural Knowledge

(SHARK’08), pages 71–78. ACM, 2008.
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∙ Farenhorst, R. and R.C. de Boer. Knowledge Management in Software Architec-

ture: State of the Art. In Software Architecture Knowledge Management: Theory

and Practice. (Ali Babar et al., 2009). Springer, 2009.

Parts of Chapter 4, have been published previously as:

∙ de Boer, R.C., R. Farenhorst, J.S. van der Ven, V. Clerc, R. Deckers, P. Lago,

and H. van Vliet. Structuring Software Architecture Project Memories. In 8th

International Workshop on Learning Software Organizations (LSO’06), pages

39–47, Rio de Janeiro, Brazil, 2006.

∙ Farenhorst, R., R.C. de Boer, R. Deckers, P. Lago, and H. van Vliet. What’s in

Constructing a Domain Model for Sharing Architectural Knowledge? In 18th

International Conference on Software Engineering and Knowledge Engineering

(SEKE’06), pages 108–113, Knowledge Systems Institute, 2006.

∙ de Boer R.C., R. Farenhorst, P. Lago, H. van Vliet, V. Clerc, and A. Jansen.

Architectural Knowledge: Getting to the Core. In 3rd International Conference

on the Quality of Software-Architectures (QoSA 2007), pages 197–214, Springer,

2007.
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3
Architectural Knowledge Management -

State of the Art

The main topic of this thesis is architectural knowledge management. But what is

‘architectural knowledge management’? And what is ‘architectural knowledge’, for

that matter? This chapter reports on the results of a study in which we examine how

architectural knowledge is defined and how the different definitions in use are related.

We describe the main views on architectural knowledge and from there discuss the state

of the art in architectural knowledge management.

3.1 Introduction

The software architecture community puts more and more emphasis on managing ar-

chitectural knowledge. However, there appears to be no commonly accepted definition

of what architectural knowledge entails. Nevertheless, architectural knowledge has

played a role in discussions on design, reuse, and evolution for over a decade. Over

the past few years, the term has significantly increased in popularity and attempts are

being made to properly define what constitutes architectural knowledge.

In answer to the question ‘what is architectural knowledge?’, in §3.2 we describe

four main views on architectural knowledge that emerged from a systematic literature

review, and explore their commonalities and differences. Using two orthogonal archi-

tectural knowledge dimensions, we define four categories of architectural knowledge.

The potential knowledge conversions between these categories, which we describe in

§3.3, together form a descriptive framework with which different architectural knowl-

edge management philosophies can be typified. This framework shows that the differ-

ences between the four views on architectural knowledge are very much related to the
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different philosophies they are based on.

Whereas traditionally tools, methods, and methodologies for architectural knowl-

edge management were confined to a single philosophy, a trend can be observed to-

wards a more overarching ‘decisions-in-the-large’ philosophy that unifies aspects of

different single-philosophy approaches. In §3.4 we discuss how decision-oriented

approaches usually intentionally opt for a codification strategy, while the uninten-

tional practice is to support personalization too. Intentional personalization, or hybrid

codification-personalization strategies, are hardly reported. The systematic review pro-

tocol that we used to derive the results presented in this chapter can be found in §3.5.

3.2 What is ‘Architectural Knowledge’?

To be able to understand what architectural knowledge entails, we have conducted a

systematic literature review in which we explored the ‘roots’ architectural knowledge

has in different software architecture communities. The review revealed four primary

views on architectural knowledge. In §3.2.1 we elaborate upon these views, and show

there is not a single encompassing definition. In §3.2.2 we identify the current defi-

nitions of architectural knowledge and analyze how these definitions relate to the four

views on architectural knowledge. Since design decisions seem to be a linking pin,

we further investigate the importance of the concept of decisions and how it links the

different views. To better compare its different manifestations, in §3.2.3 we propose a

framework that distinguishes between different types of architectural knowledge.

3.2.1 Different views on architectural knowledge

Architectural knowledge is related to such various topics as architecture evolution,

service oriented architectures, product line engineering, enterprise architecture, and

program understanding, to name but a few. In the literature, however, there are four

main views on the use and importance of architectural knowledge. Those four views

– pattern-centric, dynamism-centric, requirements-centric, and decision-centric – are

introduced in this section.

Pattern-centric view

In the mid-nineties, patterns became popular as a way to capture and reuse design

knowledge. People were disappointed by the lack of ability of (object-oriented) frame-

works to capture the knowledge necessary to know when and how to apply those frame-

works. Inspired by the work of Christopher Alexander on cataloging patterns used in
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civil architecture, software engineers started to document proven solutions to recurring

problems.

Initially, patterns focused mainly on object oriented design and reuse; the canonical

work in this area is the book by the ‘Gang of Four’ (Gamma et al., 1994). The aim

was to let those design patterns capture expert and design knowledge, necessary to

know when and how to reuse design and code. Soon, however, the patterns community

extended its horizon beyond object-oriented design. Nowadays, patterns exist in many

areas, including patterns for analysis (e.g., (Fowler, 1997)), architectural design (e.g.,

(Fowler et al., 2002; Buschmann et al., 1996)), and the development process (e.g.,

(Coplien and Schmidt, 1995; Coplien and Harrison, 2004)).

Patterns in software development serve two purposes. Patterns are reusable so-

lutions that can be applied to recurring problems. They also form a vocabulary that

provides a common frame of reference, which eases sharing architectural knowledge

between developers. Although patterns are usually documented according to certain

templates, there is not a standard template used for all patterns. The way in which

patterns are codified make them very suitable for human consumption, but less so for

automated tools.

Dynamism-centric view

A more formal approach to architectural knowledge can be found in discussions on dy-

namic software architectures. Systems that exhibit such ‘dynamism’ can dynamically

adapt their architecture during runtime, and for example perform upgrades without the

need for manual intervention or shutting down. Such systems must be able to self-

reflect and ‘reason over the space of architectural knowledge’ (Georgas and Taylor,

2004), which invariably means that – unlike patterns – this architectural knowledge

must be codified for consumption by non-human agents.

Since the software itself must understand the architectural knowledge, architecture-

based adaptation has to rely on rather formal ways of codification. A survey by Brad-

bury et al. (2004) reveals that almost all formal specification approaches for dynamic

software architectures are based on graph representations of the architectural struc-

ture. Purely graph-based approaches use explicit graph representations of components

and connectors. In those approaches, architectural reconfiguration is expressed with

graph rewriting rules. Other approaches, which use implicit graph representations, rely

mainly on process algebra or logic to express dynamic reconfiguration of the architec-

ture.

A particular family of formal languages for representing architectures is formed

by so-called ‘architecture description languages’ (ADLs). Although not all ADLs

are suitable for use in run-time dynamic systems, all ADLs are based on the same
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component-connector graph-like representation of architectures (cf. (Medvidovic and

Taylor, 2000)).

Requirements-centric view

The architecture is ultimately rooted in requirements. Therefore, architectural knowl-

edge plays a role in enabling traceability in the transition from requirements to ar-

chitecture. But there is an inverse relation too, namely the fact that ‘stakeholders are

quite often not able to specify innovative requirements in the required detail without

having some knowledge about the intended solution’ (Pohl and Sikora, 2007). Hence,

in order to specify sufficiently detailed requirements, one needs knowledge about the

(possible) solutions, which means that requirements and architecture need to be co-

developed. This is a subtle, but important difference: the transition-view is a bit older

and denotes the believe that problem is followed by solution, whereas the more recent

co-development view emphasizes that both need to be considered concurrently.

The relation between requirements and architecture has been a popular subject of

discourse since the early 2000s. Although the related STRAW workshop series is no

longer organized, many researchers still focus on bridging the gap between require-

ments and architecture. A survey by Galster et al. (2006) identified and classified

the methodologies in this area, including Jackson’s problem frames (later extended to

‘architectural frames’ (Rapanotti et al., 2004)), goal-oriented requirements engineer-

ing, and the Twin Peaks model for weaving architecture and requirements (Nuseibeh,

2001a).

Decision-centric view

For many years, software architecture has mainly been regarded as the high-level struc-

ture of components and connectors. Many architectural description frameworks, such

as the IEEE-1471 standard (IEEE 1471) therefore have a particular focus on document-

ing the end result of the architecting process.

Nowadays, the view on architecture seems to be shifting from the end result to the

rationale behind that end result. This shift stems largely from the lack of solid doc-

umentation methodologies for the rationale of architectural designs. More and more

researchers (e.g., (Kruchten et al., 2006a; Jansen and Bosch, 2005; van der Ven et al.,

2006b; Tyree and Akerman, 2005)) agree that one should consider not only the re-

sulting architecture itself, but also the design decisions and related knowledge that

represent the reasoning behind this result. All such architectural knowledge needs to

be managed to guide system evolution and prevent knowledge vaporization (Bosch,

2004).
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The treatment of design decisions as first-class entities enables the consideration

of a wide range of concerns and issues, including purely technical issues, but also

business, political, and social ones. Architects need to balance all these concerns in

their decision making. To justify the architectural design to other stakeholders, com-

munication of the architectural design decisions plays a key role. In that sense, the

decision-centric view is very much related to the (broader) field of design rationale.

3.2.2 Definitions of architectural knowledge

If there’s anything clear from the four views on architectural knowledge, it must be

that there is not a single encompassing definition of what this knowledge entails. In

order to obtain a better understanding of the concept of architectural knowledge, we

searched for studies defining or discussing ‘architectural knowledge’. We found 116

such studies, 14 of which provide an actual definition. We examined the relations

between those definitions through reciprocal translational analysis (Noblit and Hare,

1988). This analysis shows that most of the definitions focus on design decisions,

although some refer to solution fragments or elements from the problem domain as

well. A subsequent analysis of concepts related to those definitions shows that, contrary

to the focus of the definitions, most authors seem to agree that architectural knowledge

spans all these areas. We also encountered two surprising definitions: one, used by

two authors, from the area of systems design and one over a decade old but remarkably

similar to current ones.

One of the first striking observations from the 116 selected primary studies it the

very clear upward trend in the number of publications that discuss architectural knowl-

edge. There is undoubtedly an increasing interest in the topic. Fig. 3.1 shows the num-

ber of publications per year that discuss and/or define architectural knowledge. The

figure clearly shows that in 1992 the concept was coined for the first time and that from

that date on every year ‘architectural knowledge’ crops up in at least one publication.

However, until the early 2000s architectural knowledge received fairly little attention.

From 2001 onward, the number of publications per year has seen uninterrupted and

rapid growth which continues to this date.

Synthesis of architectural knowledge definitions

Although we found 116 studies that discuss architectural knowledge, only 14 of them

give a clear definition of what architectural knowledge entails. These definitions are

listed in Table 3.1, ordered chronologically by publication date. This table shows that

almost all definitions were proposed over the past three years, which corresponds to

the increasing interest in architectural knowledge observed earlier.
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Figure 3.1: Studies that discuss architectural knowledge

Chronologically, a clear outlier in Table 3.1 is the work by Ran and Kuusela (1996).

Already in 1996, they are the first to give a definition of architectural knowledge.

Moreover, their definition is remarkably similar to the decision-centric view on archi-

tectural knowledge currently prevalent in the software architecture community. How-

ever, somehow this work seems unrelated to the stir that started in the early 2000s and

brought more attention to architectural knowledge, especially in terms of design deci-

sions. On the contrary, as far as we know Ran and Kuusela’s work is hardly referenced

in current discussions.

In the 14 definitions from Table 3.1, there are 15 concepts that play a major role.

Not every definition relies on unique concepts, but similar concepts are used by differ-

ent authors in different definitions. In Table 3.2, we have made this relation clear by

translating each definition of architectural knowledge into the concepts it uses.

If we carefully examine the concepts used in definitions of architectural knowledge,

we can identify five higher-level constructs to which those definitions relate: decision,

problem domain, solution fragment, implementation, and systems design. The relation

between the definitions and the five constructs is represented by the gray areas in Ta-

ble 3.2. To a certain extent, the high-level constructs correspond to the different views

on architectural knowledge (cf. §3.2.1), but there are also differences:

1. Definitions that center around design decisions

By far the largest percentage of the definitions we found focus on design de-
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Table 3.1: Definitions of ‘architectural knowledge’
Author(s) Architectural Knowledge Definition

Ran and Kuusela (1996) To avoid replication when representing variations and alternatives DDT structures architectural

knowledge hierarchically into fine-grain elements we call design decisions.

Carayannis and Coleman (2005) The architectural innovation is dependent on the system designers’ knowledge of the components

in the system and their knowledge of the configuration of the components. Henderson and Clark (as

cited in Afuah, 1998) show the knowledge as Component Knowledge (CK) and the latter Architec-

tural knowledge (AK).

Chen (2005) A distinction that is particularly significant in the product innovation context is the distinction be-

tween component-specific knowledge and “architectural” knowledge (Henderson and Clark, 1990).

Component knowledge is knowledge that concerns a particular aspect of an organization’s product,

process or operation. Architectural knowledge, on the other hand, relates to the various ways in

which the components are integrated and linked together into a complete system.

Kruchten et al. (2005) Architectural knowledge consists of architecture design as well as the design decisions, assump-

tions, context, and other factors that together determine why a particular solution is the way it is.

Kruchten et al. (2006a) Architectural Knowledge = Design Decisions + Design, derived from ‘Architectural knowledge

consists of architecture design as well as the design decisions, assumptions, context, and other

factors that together determine why a particular solution is the way it is.’

Kruchten et al. (2006b) Some researchers are looking into architectural knowledge – that is, architectural design decisions

and their rationale.

Ali Babar et al. (2006) We propose a framework for managing design rationale to improve the quality of architecture pro-

cess and artifacts. This framework consists of techniques for capturing design rationale, and ap-

proach to distill and document architectural information from patterns, and a data model to charac-

terize architectural constructs, their attributes and relationships. These collectively comprise Archi-

tectural Design Knowledge (ADK) to support the architecting process.

Lago and Avgeriou (2006);

Avgeriou et al. (2007a)

Architectural Knowledge (AK) is defined as the integrated representation of the software architec-

ture of a software-intensive system or family of systems along with architectural decisions and their

rationale external influence and the development environment.

Lee and Kruchten (2007) Software architectural knowledge is composed of the design and the set of decisions made to arrive

at the design.

de Boer and van Vliet (2007) Following a recent trend in software architecture research we refer to the collection of architectural

design decisions and the resulting architectural design as ‘architectural knowledge’.

Farenhorst et al. (2007) [..] not only the architecture design itself is important to capture, but also the knowledge pertaining

to it. Often, this so-called architectural knowledge is defined as the set of design decisions, including

the rationale for these decisions, together with the resulting architectural design.

Habli and Kelly (2007) Architectural Knowledge = {drivers, decisions, analysis}

Ali Babar and Gorton (2007) [The knowledge management component] provides services to store, retrieve, and update artifacts

that make up architectural knowledge.

Bahsoon (2007) We anticipate the architectural knowledge to constitute architectural artifacts such as deployable

components and associated specification of what the components provide and require, quality re-

quirements, scenarios corresponding to specific dependability requirements, and possibly depend-

able styles and patterns.

cisions (Avgeriou et al., 2007a; Ali Babar et al., 2006; de Boer and van Vliet,

2007; Farenhorst et al., 2007; Habli and Kelly, 2007; Kruchten et al., 2006a,

2005, 2006b; Lago and Avgeriou, 2006; Lee and Kruchten, 2007; Ran and Ku-

usela, 1996). Some are limited to design decisions and accompanied rationale,

some others are a bit broader and also explicitly refer to the resulting design. The

decision construct to a large extent corresponds to the decision-centric view on

architectural knowledge.
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Table 3.2: Constituents of architectural knowledge definitions
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Architectural Design x x x x x x

Design decisions x x x x x x x x x

Rationale x x x (x) x x

Problem Domain

Analysis x

Non-funct. requirement x

Assumption (x) x

Context x (x) x

Driver x

Scenario x

Solution Fragment
Patterns x x

Styles x

Implementation Deployable component x

Systems Design Component configuration x x

Architectural constructs x

Artifact x

2. Definitions that contain elements from the problem domain

Several definitions contain elements from the problem domain (Avgeriou et al.,

2007a; Bahsoon, 2007; Habli and Kelly, 2007; Kruchten et al., 2006a, 2005;

Lago and Avgeriou, 2006). Those elements are typically factors that influence

the architect’s work. None of the definitions solely contains problem domain

concepts, but about half of the definitions does take the problem domain into

account. The problem domain construct relates to the requirements-centric view

on architectural knowledge, especially since the problem domain elements do not

stand on their own but are – through the definitions – linked to either decisions

or solutions.

3. Definitions that specify solution fragments

Closely related to the view of the pattern community on architectural knowl-

edge, some definitions specify solution fragments as key aspects of architectural

knowledge (Ali Babar and Gorton, 2007; Ali Babar et al., 2006; Bahsoon, 2007).
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But, as with elements from the problem domain, those solution fragments are

never considered to fully encompass architectural knowledge.

4. Definitions that refer to implementation

One of the definitions (Bahsoon, 2007) refers to the implementation of architec-

tural solutions in terms of ‘deployable components’. This definition has been

coined from a perspective of the role of architectural knowledge in dependable

systems, and is consequently much related to the dynamism-centric view.

5. Definitions from the realm of systems design Two studies apply a surprising

definition of architectural knowledge, referred to particularly in studies from

systems design and product development, to the world of software-intensive sys-

tems (Carayannis and Coleman, 2005; Chen, 2005). This definition is completely

orthogonal to other definitions used, and talks about components in a less techni-

cal sense than the usual component-connector meaning. One of the authors refers

to components as “a particular aspect of an organization’s product, process, or

operation” (Chen, 2005), whereas the other defines components of a technical

system as “products, processes, people, services, and technologies” (Carayan-

nis and Coleman, 2005). Nevertheless, one of the authors uses this definition

to assess knowledge creation in different software development settings. This

topic would probably interest those who approach architectural knowledge from

an orthogonal point of view as well. The systems design view on architectural

knowledge does not, however, seem to fit any of the views we identified in §3.2.1.

Table 3.2 also shows two concepts (architectural construct and artifact) that we

found to be too broad to fit one particular construct. From the definition alone, it

remains unclear to which construct those concepts would or would not belong.

The apparent importance of the decision-centric view in discussing and defining

architectural knowledge may be explained when we look at the links between this view

and the other views; decisions appear to be the linking pin between the different views.

The relation between patterns and decisions is discussed by Harrison et al. (2007).

Their conclusion is that the two are complementary concepts, and that ‘[u]sing a pattern

in system design is, in fact, selecting one of the alternative solutions and thus making

the decisions associated with the pattern in the target systems specific context’. Ran

and Kuusela (1996) proposed a hierarchical ordering of design patterns in what they

call a ‘design decision tree’.

The relation between design decisions and requirements can be approached from

two directions. Bosch (2004) conceptually divides an architectural design decision

into a ‘solution part’ and a ‘requirements part’. The requirements part represents the

subset of the system’s requirements to which the solution part provides a solution. Van
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Lamsweerde (2003), on the other hand, argues that for alternative goal refinements

and assignments, ‘decisions have to be made which in the end will produce different

architectures’.

Formal graph-based architecture representations are especially suitable for auto-

mated reasoning. In other words, those representations enable automated agents either

take design decisions themselves (Bradbury et al., 2004), or to inform human architects

about potential problems and pending decisions (Robbins et al., 1996).

Decisions may indeed be an umbrella concept that unify parts of those different

views on architectural knowledge, because they closely relate to various manifesta-

tions of architectural knowledge concepts. Of course, there are differences between

the views too: patterns are individual solution fragments, formal representations focus

on the end result only, and requirements engineering is more occupied with problem

analysis than solution exploration.

3.2.3 So, what is Architectural Knowledge?

If we want to better compare the different manifestations of architectural knowledge,

it helps to distinguish between different types of architectural knowledge. Two distinc-

tions are particularly useful: tacit vs. explicit knowledge, and application-generic vs.

application-specific architectural knowledge.

Nonaka and Takeuchi (1995) distinguish between tacit and explicit knowledge.

This distinction is applicable to knowledge in general, and its application to architec-

tural knowledge allows us to distinguish between the (tacit) knowledge that an architect

and other stakeholders build up from experience and expertise, and the (explicit) archi-

tectural knowledge that is produced and codified – for example in artifacts such as

architecture descriptions.

The distinction between application-generic and application-specific architectural

knowledge has been proposed by Lago and Avgeriou (2006). This distinction, which

is not necessarily applicable to other knowledge than ‘architectural’ knowledge, allows

us to distinguish between (application-generic) knowledge that is “a form of library

knowledge” that “can be applied in several applications independently of the domain”

and (application-specific) knowledge that involves “all the decisions that were taken

during the architecting process of a particular system and the architectural solutions

that implemented the decisions”. In summary, application-generic knowledge is all

knowledge that is independent of the application domain, application-specific knowl-

edge is all knowledge related to a particular system.

Since the two distinctions are orthogonal, a combination of the two results in four

main categories of architectural knowledge, which are depicted in Fig. 3.2. That figure
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Figure 3.2: Architectural knowledge categories

also provides examples of the type of architectural knowledge that fits each of the four

categories.

∙ Application-generic tacit architectural knowledge includes the design knowledge

an architect gained from experience, such as architectural concepts, methodolo-

gies, and internalized solutions.

∙ Application-specific tacit architectural knowledge comprises contextual domain

knowledge regarding forces on the eventual architectural solution; it includes

business goals, stakeholder concerns, and the application context in general.

∙ Application-generic explicit knowledge is design knowledge that has been made

explicit in discussions, books, standards, and other types of communication. It

includes reusable solutions such as patterns, styles and tactics, but also architec-

ture description languages, reference architectures, and process models.

∙ Application-specific explicit architectural knowledge is probably the most tan-

gible type of architectural knowledge. It includes all externalized knowledge

of a particular system, such as architectural views and models, architecturally

significant requirements, and codified design decisions and their rationale.
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3.3 Philosophies of Architectural Knowledge

Management

Knowledge from each of the four architectural knowledge categories can be converted

to knowledge in another (or even in the same) category. This conversion lies at the

basis of different architectural knowledge management philosophies. For some, ar-

chitectural knowledge management may be mainly intended to support the transition

from application-generic to application-specific knowledge. For others, the interplay

between tacit and explicit knowledge may be the essence of architectural knowledge

management.

Nonaka and Takeuchi (1995) define four modes of conversion between tacit and

explicit knowledge: socialization (tacit to tacit), externalisation (tacit to explicit), in-

ternalisation (explicit to tacit), and combination (explicit to explicit). Based on the

distinction between application-generic and application-specific knowledge, we can

define four additional modes of conversion:

∙ Utilization is the conversion from application-generic knowledge to application-

specific knowledge. It is a common operation in the architecting process where

background knowledge and experience are applied to the problem at hand.

∙ Abstraction is the conversion from application-specific to application-generic

knowledge. In this conversion, architectural knowledge is brought to a higher

level of abstraction so that it has value beyond the original application domain.

∙ Refinement is the conversion from application-specific knowledge to application-

specific knowledge. Here, the architectural knowledge for a particular applica-

tion is analyzed and further refined and related.

∙ Maturement is the conversion from application-generic to application-generic

knowledge. It signifies the development of the individual architect as well as the

architecture field as a whole, i.e., a kind of learning where new generic knowl-

edge is derived and becomes available for application in subsequent design prob-

lems.

In total, there are sixteen architectural knowledge conversions. Each conversion is

formed by pairing one of the four conversions between tacit and explicit knowledge

with one of the four conversions between application-generic and application-specific

knowledge. Together, the sixteen conversions form a descriptive framework with which

different architectural knowledge management philosophies can be typified.
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We saw earlier that the four views on architectural knowledge can all be related

to decision making. At the same time, we saw that there are also obvious differences

between those views. Those differences are very much related to the different architec-

tural knowledge management philosophies they are based on.

The pattern-centric view, for example, is mainly geared towards the development

of a shared vocabulary of reusable, abstract solutions. As such, the development of a

shared tacit mental model is a major goal. This goal is achieved by sharing application-

generic patterns that are mined from application-specific solutions. A second goal is the

development of libraries of reusable solutions, which is made possible by maturement

of documented patterns by cataloging them. The knowledge management philosophy

in this view is primarily based on the following architectural knowledge conversions,

which are also visualized in Fig. 3.3:

(a) Abstraction and combination: The most obvious example of this conversion is

the process of pattern mining. Patterns are inherently abstractions. They are

mined from existing architectural solutions and described in a clear and struc-

tured way to improve the reusability.

(b) Utilization and combination: One of the ways in which patterns can be reused

in new designs is by looking them up in books, catalogs, or other repositories.

Architects who wish to design a system comprised of several independent pro-

grams that work cooperatively on a common data structure could look up one

of the many books available on architectural patterns (e.g., (Buschmann et al.,

1996)) to find out that the ‘blackboard’ pattern is just what they need. Booch (on-

line) works on the creation of a ‘Handbook of Software Architecture’, of which

the primary goal is “to fill this void in software engineering by codifying the

architecture of a large collection of interesting software-intensive systems, pre-

senting them in a manner that exposes their essential patterns and that permits

comparisons across domains and architectural styles.”.

(c) Maturement and combination: Documented patterns may be organized in pat-

tern catalogs. These catalogs present a collection of relatively independent so-

lutions to common design problems. As more experience is gained using these

patterns, developers and authors will increasingly integrate groups of related pat-

terns to form so-called pattern languages (Schmidt et al., 1996). Although each

pattern has its merits in isolation, the strength of a pattern language is that it inte-

grates solutions to particular problems in important technical areas. An example

is provided by Schmidt and Buschmann (2003) in the context of development

of concurrent networked applications. Each design problem in this domain –

including issues related to connection management, event handling, and service
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Figure 3.3: Architectural knowledge management philosophies

access – must be resolved coherently and consistently and this is where pattern

languages are particularly helpful.

(d) Maturement and internalisation: Experienced architects know a large collection

of patterns by heart. Such architects have no trouble discussing designs in terms

of proxies, blackboard architectures, or three-tier CORBA-based client-server

architectures. Their exposure to and experience with those patterns has led to

internalised and matured pattern knowledge. The consequent shared, tacit vo-

cabulary can be employed at will, without the need to look up individual patterns

in order to understand what the other party means.

(e) Utilization and externalisation: When an architect has internalized several pat-
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terns, the use of those patterns as a means for communication or design is a

combination of utilization (of the pattern) and externalisation (of the knowledge

about the pattern and its existence).

While the pattern-centric view aims to support the development of tacitly shared

application-generic architectural knowledge, the dynamism-centric view is focused

much more on explicit application-specific architectural knowledge. Although some

application-generic knowledge is utilized, the actual reasoning and reconfiguration uses

application-specific knowledge. This architectural knowledge management philosophy

is therefore primarily based on two conversions:

(f) Refinement and combination: Corresponds to the formal reasoning over codified

architectural solutions in terms of models that are consumable by non-human

agents. According to Bradbury et al. (2004), in a self-management system all

dynamic architectural changes have four steps (initiation of change, selection

of architectural transformation, implementation of reconfiguration, and assess-

ment of architecture after reconfiguration) which should all occur within the au-

tomated process.

(g) Utilization and combination: corresponds to formally specifying components and

connectors in generic languages such as ADLs or other graph representations.

Medvidovic and Taylor (2000) propose a comparison and classification frame-

work for ADLs, which enables the identification of key properties of ADLs and

shows the strength and weaknesses of these languages. In their comparison,

Medvidovic and Taylor point out that at one end of the spectrum some ADLs

specifically aim to aid architects in understanding a software system by offering

a simple graphical syntax, some semantics and basic analyses of architectural

descriptions. At the other end of the spectrum, however, ADLs provide formal

syntax and semantics, powerful analysis tools, model checkers, parsers, compil-

ers, code synthesis tools and so on.

For the requirements-centric view, the primary goal is tracing knowledge about

the problem to knowledge about the solution. In co-development, an additional goal

is to connect knowledge about problem and solution so that a stakeholder’s image of

the problem and solution domain is refined. In this view, the primary architectural

knowledge conversions are:

(h) Refinement and socialization: Especially in co-development, stakeholders and ar-

chitects will interact to align system goals and architectural solutions. Such in-

teraction between ‘customer’ and ‘product developer’ is a prime example of a

situation in which tacit knowledge is shared (cf. (Nonaka and Takeuchi, 1995)).
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Pohl and Sikora (2007) discuss the need for co-development of requirements and

architecture. They argue that such co-design is only possible if there is sufficient

knowledge about the (course) solution when defining (detailed) system require-

ments: “instead of defining requirements based on implicit assumptions about

the solution, requirements and architectural artifacts need to be developed con-

currently”. An example of such an approach is the Twin Peaks model (Nuseibeh,

2001a).

(i) Refinement and combination: Adding and maintaining traceability from require-

ments to architecture is a refinement step that combines explicit knowledge about

elements from the problem and the solution space. Several techniques exist to

guide the transition from requirements engineering to software architecture. In

their 2006 survey, Galster et al. use architectural knowledge as knowledge about

(previous) architectural solutions that can be reused when encountering similar

requirements in a new project. They present patterns as a useful container for

these reusable assets. Another approach for guiding the transition between re-

quirements and architecture is that of feature-solution graphs by de Bruin and

van Vliet (2003). They use architectural knowledge as knowledge about qual-

ity concerns (represented as features) and solution fragments at the architectural

level (represented as solutions). These are modeled together as Feature-Solution

graphs in order to guide the explicit transition (or alignment) between the prob-

lem and solution world.

(k) Refinement and externalisation: Externalisation of application-specific tacit

knowledge – such as concerns, goals, and the like – is an important part of the

requirements process. Externalisation of tacit knowledge (problem-related as

well as solution-related) is a precondition for maintaining traceability.

(j) Refinement and internalisation: The interaction between architects and stakehold-

ers is not purely a matter of socialization. In co-development, for example, spec-

ifications and design artifacts play a major role as well and may be an aid to let

the parties ‘re-experience’ each other’s experiences (cf. (Nonaka and Takeuchi,

1995)). This internalization of explicit application-specific architectural knowl-

edge may consequently lead to ‘new ideas and insights concerning both the en-

visioned system usage and the architectural solution’ (Pohl and Sikora, 2007).

Finally, the essential philosophy of the decision-centric view is externalizing the

rationale behind architectural solutions (i.e., ‘the why of the architecture’) that can then

be internalized and shape other people’s mental models, so as to prevent knowledge

vaporization. The architectural knowledge conversions central to this philosophy are:
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(l) Refinement and combination: corresponds to reasoning about codified architec-

tural solutions, which need not be fully automated but may involve decision sup-

port. One such decision support approach is introduced by Robbins et al. (1996),

who introduce the concept of ‘critics’. Critics are active agents that support

decision-making by continuously and pessimistically analyzing partial architec-

tures. Each critic checks for the presence of certain conditions in the partial

architecture. Critics deliver knowledge to the architect about the implications

of, or alternatives to, a design decision. Often, critics simply advise the archi-

tect of potential errors or areas needing improvement in the architecture. One

could therefore see critics as an automated form of the backlog that architects

use in the architecting process to acquire and maintain overview of the problem

and solution space (Hofmeister et al., 2007). Another approach that fits this con-

version is the Archium tool proposed by Jansen et al. (2007), which is aimed

at establishing and maintaining traceability between design decision models and

the software architecture design.

(m) Utilization and combination: This conversion amounts to the reuse of codified,

generic knowledge (decision templates, architectural guidelines, patterns, etc.)

‘to take decisions for a single application and thus construct application-specific

knowledge’ (Lago and Avgeriou, 2006).

(n) Internalisation and abstraction: Based on experience and expertise, an architect

may quickly jump to a ‘good’ solution for a particular problem. Such a good

solution can be a combination of several finer grained design decisions. This

combination of design decisions may become so common for the architect that

the solution is no longer seen as consisting of individual decisions. It may be hard

for the architect to reconstruct why a certain solution fits a particular problem;

the architect ‘just knows’.

(o) Utilization and externalisation: When a solution has been internalized, and the

architect ‘just knows’ when to apply it, it becomes difficult to see which other

solutions are possible. Part of the decision-centric philosophy (e.g., in (de Bruin

and van Vliet, 2003)) is therefore to reconstruct and document the constituting

design decisions.

(p) Refinement and internalisation: This ‘consumption’ of architectural knowledge

takes place when people want to ‘learn from it or carry out some quality assess-

ment’ (Lago and Avgeriou, 2006).

(q) Refinement and externalisation: The rationalization of taken architectural deci-

sions, i.e., reconstruction and explanation of the ‘why’ behind them, is a crucial
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part of the decision-centric philosophy in which tacit knowledge is made explicit.

In this respect, the software architecting can apply the best practices known from

the ‘older’ and well-known field of design rationale. Regli et al. (2000) present

a survey of design rationale systems, in which they distinguish between process-

oriented and feature-oriented approaches. Process-oriented design rationale sys-

tems emphasize the design rationale as a ‘history’ of the design process, which is

descriptive and graph-based. A well-known example is the Issue-Based Informa-

tion System (IBIS) framework for argumentation. A feature-oriented approach

starts from the design space of an artifact, where the rules and knowledge in

the specific domain must be considered in design decision making. Often these

type of design rationale systems offer support for automated reasoning. A more

recent survey on architecture design rationale by Tang et al. (2005) provides in-

formation about how practitioners think about, reason with, document and use

design rationale. It turns out that although practitioners recognize the importance

of codifying design rationale, a lack of appropriate standards and tools to assist

them in this process acts as barrier to documenting design rationale. Fortunately,

the field of design rationale is working hard on developing more mature support.

Recent developments have led to the creation of tooling such as Compendium

and SEURAT (Burge and Brown, 2008), and models such as AREL (Tang et al.,

2007).

(r) Abstraction and combination: Amounts to the construction of high-level struc-

tures (templates, ontologies, models) to capture and store architecture design

decisions. Various approaches to codify architectural design decisions in such a

way have been reported. Tyree and Akerman (2005) present a template to cod-

ify architectural design decisions together with their rationale and several other

properties relevant to that decision, such as the associated constraints, a times-

tamp, and a short description. Kruchten (2004) proposes a more formal approach

of codifying design decisions by using an ontology. Ran and Kuusela (1996)

present work on design decision trees.

From our discussion on the different philosophies, we can conclude that the differ-

ences between the four views on architectural knowledge are very much related to the

philosophies they are based on. However, while many single-philosophy approaches

for architectural knowledge management exist (e.g., rationale management systems in

the decision-centric view, ADLs in the dynamism-centric view, traceability support in

the requirements-centric view, or pattern languages in the pattern-centric view), in re-

cent years, a shift towards more overarching approaches can be observed. Many of

these overarching approaches seem to have ties to the decision-centric view. This is
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related to our earlier observation that ‘decisions’ seem to be an umbrella concept for

all views on architectural knowledge; there appears to be a movement to a fifth, unified,

philosophy which we could call ‘decisions-in-the-large’.

The idea of ‘decision-in-the-large’ is related more to the architecting process than

to pure rationale management (which we could call ‘decision-in-the-narrow’), even

though codifying rationale and preventing knowledge vaporization has been one of the

prime drivers for the decision-centric philosophy. Obviously, some ‘decision-in-the-

large’ approaches evolved from ‘decision-in-the-narrow’ approaches. But a focus on

‘decision-in-the-large’ seems driven more by architectural knowledge use cases than

by anything else, often under the concept ‘knowledge sharing’. A classification of

such use cases is presented by Lago and Avgeriou (2006), who distinguish between

architecting, sharing, assessing, and learning.

3.4 Architectural Knowledge Management

Strategies

Most of the proposed approaches to manage architectural knowledge from a decisions

perspective (which includes both decisions-in-the-large and decision-in-the-narrow)

can broadly be categorized into codification and personalization (Hansen et al., 1999).

The codification strategy concentrates on identifying, eliciting and storing knowledge

in repositories, which makes that knowledge widely available. This strategy promises

to support high-quality, reliable, and speedy reuse of knowledge. The downside is

that it usually means separating the knowledge from its creators. The personalization

strategy emphasizes the interaction among knowledge workers. In this strategy the

knowledge is kept with its creator, who is made known as possessor of the required

knowledge. While academic approaches seem to focus on codification, industry prac-

tice seems to have a need for personalization as well.

3.4.1 Academic approaches

A number of research initiatives take a decisions-in-the-large architectural knowledge

perspective to devise tools and methods to manage architectural knowledge.

DGA DDR Falessi et al. (2006) have proposed a framework that focuses on the rea-

sons why design decisions have been taken. The framework contains a specific design

decision rationale documentation technique called DGA DDR, which is driven by the
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decision goals and design alternatives available. The framework aims not only to doc-

ument decisions previously taken, but also to support decision makers in taking these

decisions. The framework consists of two main activities. In the first activity the project

objectives and constraints are defined and it is investigated which decision relationships

are appropriate for the project. In the second activity the knowledge is further refined

and described in tables.

PAKME Researchers at National ICT Australia (NICTA) have proposed an archi-

tectural knowledge management framework, which incorporates concepts from knowl-

edge management, experience factory, and pattern-mining (Ali Babar et al., 2005). This

framework consists of various approaches to capture design decisions and contextual

information, an approach to distill and document architecturally significant information

from patterns, and a data model to characterize architectural constructs, their attributes

and relationships. The main objective of the framework is to provide a theoretical

underpinning and conceptual guidance to design and implement a repository-based

tool support for managing architectural knowledge. A web-based knowledge manage-

ment tool, called Process-based Architecture Knowledge Management Environment

(PAKME), has been developed to support the proposed framework.

GRIFFIN Within the Griffin consortium, we and other researchers have been work-

ing on methods, tools, and techniques to manage architectural knowledge. One of the

results of this project is a model of architectural knowledge (presented in Chapter 4)

which, although later refined to a more generic model, was originally intended as a

structure for software architecture project memories. A software architecture project

memory stores architectural knowledge, such as the design decisions embodied in the

architecture as well as the rationale underlying the design decisions. This allows man-

agement of know-why and know-how of software architectures, in addition to know-

what already targeted by most existing notational and documentation approaches in

software architecture, which typically focus on components and connectors.

ADDSS Two collaborating universities in Spain have proposed to extend traditional

architectural view methods, such as the 4+1 view method, with a decision view that al-

lows capturing design decisions in the architecture process (Dueñas and Capilla, 2005).

Capilla et al. (2006) have proposed a web-based tool called ADDSS for recording

architectural design decisions. In this work a meta-model and a web-based tool are

proposed to record, maintain and manage the architectural decisions taken. The tool

allows for modeling traces between decisions and supports traceability between design

decisions and artifacts such as architecture diagrams.
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3.4.2 Industrial practice

In parallel to the academic community, industry has on itself tried to employ – some-

times subconsciously – knowledge management practices to the software architecture

process. Below we elaborate on a number of knowledge management initiatives we

have encountered in industry that are related to software architecture and architectural

knowledge.

DNV DNV is a medium-sized consultancy firm that performs independent software

product quality audits for third parties. One of the key architectural knowledge ele-

ments that plays a role in such an audit is the set of applicable quality criteria. These

criteria are a special kind of architectural design decisions that correspond to the de-

sired architecture of the software product.

Many quality criteria are applicable to multiple projects. Some projects share cer-

tain desired quality characteristics for which more or less standard architectural ap-

proaches exist. Although over the years some sort of best practices regarding the doc-

umentation of quality criteria have grown within DNV, there is no mandatory format

or template that is used to express quality criteria. Each project can adopt its own style

to document the quality criteria that are used in the audit. Part of these quality criteria

is harvested from documentation belonging to previous audit projects.

In the past, DNV has tried to employ a knowledge management approach to better

support reuse of quality criteria. Quality criteria were to be made explicit and captured

in a knowledge base that could be queried to find applicable quality criteria at the start

of a new audit project. Unfortunately, construction of this knowledge base eventually

was discontinued because it was hard to capture how quality criteria were related to

each other. Part III, especially Chapter 14 and Chapter 15, further elaborates on the

management of quality criteria in this organization.

DSTO Defence Science and Technology Organisation (DSTO) is a research and de-

velopment organization, which provides scientific and technical advice on the acquisi-

tion of material to the Australian Defence Organisation. The Airborne Mission Systems

(AMS) division of DSTO is responsible for evaluating software architectures for air-

craft acquisition projects. AMS is required to understand and organize large amounts of

architectural knowledge for a mission system’s architecture to support the evaluation

process. Currently, the architectural evaluation process mainly relies on the domain

knowledge of local experts.

AMS’s technical leadership became increasingly interested in building its capa-

bilities in systematically evaluating system and software architectures and managing

architectural knowledge for aircraft mission systems. Hence, AMS decided to improve
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its architectural evaluation practices by codifying and reusing an architecture evalua-

tion process, architectural knowledge, and contextual knowledge.

RFA RFA is a large Dutch organization that develops and maintains software sys-

tems. These systems are typically critical for the public, large in size and complexity,

and long lasting. We investigated and assessed the organization’s current mechanisms

for sharing architectural knowledge.

RFA has acknowledged the need to support sharing and reuse of architectural

knowledge. To this end, the organization has deployed a knowledge repository in

which commonly used architectural knowledge is stored and made reusable in the form

of questions and answers. At the start of a project, architects use the tool to create a

very first version of the architecture description. The tool will provide the architects

with the stored questions. The architects’ answers – the initial architectural design de-

cisions for the project – are then structured and reflected in a text that provides the basis

for the remainder of the architecting process. In Part II we report in more depth on the

challenges RFA encountered with respect to sharing architectural knowledge.

VCL VCL is a multi-national software development organization. Development

teams within this organization are located at multiple sites spread throughout the globe.

Architectural knowledge is shared in the form of ‘architectural rules’; architectural de-

cisions that need to be complied with throughout the organization. A study within this

organization focused on dissemination of and compliance with architectural rules in

this multi-site environment (Clerc et al., 2007b). Dissemination of architectural rules

takes place by means of small, text-based documents; so-called architectural notes, or

archnotes.

3.4.3 A comparison with knowledge management theory

Knowledge management is a large interdisciplinary field, and has as such fostered a

number of different approaches. Earl (2001) proposes different ‘schools’ of knowledge

management, broadly characterized as the technocratic, the economic, and the behav-

ioral school. Hansen et al. (1999) divide between two strategies: codification and

personalization. Codification refers to organizations aiming their strategy on codify-

ing knowledge and making it easily available for anyone through so-called knowledge

repositories (Liebowitz and Beckman, 1998). Knowledge from individuals or groups

can be codified (or acquired) through a number of means, such as interviews, question-

naires and architecture reviews. Personalization, on the other hand, focuses on helping

people communicate knowledge, instead of storing it. This can be facilitated through
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‘yellow-page’ indexes of experts or skills management systems, or a focus on company

processes to share knowledge such as postmortem reviews. Alternative approaches are

to focus on collaborative work such as pair programming, to design informal meeting-

spaces or to use open-plan offices.

In software engineering, most research and most industry practice has been asso-

ciated with codification (Dingsøyr and Conradi, 2002); personalization has been given

less attention in knowledge management initiatives. This observation seems to hold

true for software architecture research and architectural knowledge management as

well.

The research projects listed in §3.4.1 all exhibit to a large extent a technocratic fo-

cus on codification of architectural knowledge, largely neglecting economic and behav-

ioral aspects. Both ADDSS and DGA DDR aim to record and subsequently maintain

architectural design decisions. Researchers from NICTA mention both codification and

personalization as ways to manage knowledge; nevertheless, the focus of their frame-

work is on mining and capturing (i.e., codifying) implicit knowledge in the form of

architectural patterns. The Griffin project reports on their efforts to construct software

architecture project memories that contain codified architectural knowledge in the form

of architectural design decisions and related entities.

Industry also seems to favor an explicit choice for codification of architectural

knowledge, although in practice some personalization aspects are also present. How-

ever, none of the organizations we observed seems to have intentionally made a choice

for the latter.

The strategy chosen for quality criteria reuse in DNV is a classic example of a cod-

ification strategy. DSTO’s goal to organize architectural knowledge denotes a focus on

codification as well, and RFA has clearly chosen a (centralized) codification approach

for architectural knowledge management. Personalization does not play a significant

role in the chosen architectural knowledge management strategy, although interviews

with employees of RFA brought to light that much architectural knowledge sharing

takes place through formal and informal meetings. Important (implicit) knowledge

within this organization therefore includes who knows what and which architectural

knowledge can be found where.

In VCL, the use of archnotes denotes an explicit choice of the organization for

a codification strategy for architectural knowledge distribution. This is probably not

a surprising choice, since the geographic dispersion of the development teams to a

large extent inhibits colloquial knowledge sharing. Nevertheless, to our surprise one

of the most important ‘archnotes’ (in terms of usage frequency as well as utility in

daily practice) turned out to be a ‘yellow-pages’-like document that contains names,

locations, and phone numbers of key personnel involved in the project. The users of

the archnotes system seem to have exploited the lack of mandatory structure of the
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archnotes to introduce elements of a personalization strategy in the system. Although

the organization explicitly chose to follow a codification strategy, there is apparently

an implicit undertone that personalization is very important as well. However, VCL

has never explicitly chosen to follow (or reject) a personalization strategy.

In summary, current (reported) architectural knowledge management approaches

have a tendency to heavily rely on codification. This is true both in research and in

industry. However, industry practice clearly shows that personalization is important as

well. Different organizations seem to apply personalization aspects to management of

architectural knowledge. Nevertheless, whenever personalization is encountered, this

is more the result of an implicit choice rather than an explicit preference.

3.4.4 Intentional codification vs. unintentional
personalization

The main argument for choosing a codification strategy has been that you can invest

once in knowledge assets, and reuse them many times (Hansen et al., 1999). A com-

mon critique of the codification strategy is that it may create ‘information junkyards’.

McDermott (1999) claims that “if people working in a group don’t already share knowl-

edge, don’t already have plenty of contact, don’t already understand what insights and

information will be useful to each other, information technology is not likely to cre-

ate it”. In addition, Swan et al. (1999) criticize the knowledge management field for

being too preoccupied with tools and techniques. They claim that researchers tend

to overstate the codifiability of knowledge and to overemphasize the utility of IT to

give organizational performance improvement. They also warn that “codification of

tacit knowledge into formal systems may generate its own pathology: the informal

and locally situated practices that allow the firm to cope with uncertainty, may become

rigidified by the system”.

One can also question the strong focus on codification when it comes to managing

knowledge related to software architectures. Frequent technological changes make up

a force which makes knowledge reuse difficult in the software engineering field. For

knowledge that is not to be reused many times, personalization is inexpensive compared

to codification.

Then again, the high prevalence of codification in architectural knowledge man-

agement might be the result of a number of distinctive characteristics of the software

architecture field. First, software architects are used to codify knowledge, through

work with modeling techniques and through identifying architectural patterns. Sec-

ond, software architects are very mature users of information technology, and should

be able to use technical tools more efficiently than employees in other domains. Third,

architectural knowledge is the earliest design knowledge, which can be expected to be
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used and revisited often throughout the whole software development life cycle. With a

high level of knowledge reuse, the cost of codification may be outweighed by its bene-

fits. These characteristics of the software architecture field seem to favor a codification

strategy for managing architectural knowledge.

But in spite of a favor for using a codification strategy in software architecture,

in the software engineering field there are very few reports of organizations that have

opted for a codification strategy where the developed knowledge repositories have been

used to a large extent over time (Dingsøyr and Røyrvik, 2003). The apparent issues

with and discontinuation of various codification efforts in industry reported in §3.4.2

further illustrate the difficulty of sustained exploitation of knowledge repositories. So

the question is: is codification really the answer?

Kankanhalli et al. (2005) have developed a model to explain the use of knowl-

edge repositories, a central element in the codification strategy. Their study indicates

that social incentives are important in order to increase knowledge repository usage.

Moreover, some knowledge is difficult or impossible to codify, and there can be prob-

lems interpreting knowledge if sufficient context information is not codified as well. A

personalization strategy can stimulate discussion within a company and may be more

appropriate in certain situations.

Our investigation of current approaches in architectural knowledge management

suggests that there is an ongoing trend in industry of increasing awareness of the need

for a strategic choice for architectural knowledge management and, simultaneously,

increasing efforts to express such knowledge. This results in a movement from unin-

tentional personalization (UP) - used by most organizations - to intentional codification

(IC). This situation is graphically depicted in Fig. 3.4.

However, the reported IC initiatives from industry all seem to encounter their own

problems. Current research tries to alleviate such problems by inventing structured ap-

proaches to architectural knowledge management, using an IC strategy. In the mean-

time, both industry and research seem to ignore (or forget about) the existence of in-

tentional personalization (IP).

Codification has the potential to contribute to better management of architectural

knowledge, given that the research field takes into consideration how important social

aspects are to get such systems into use. There are good reasons for many organizations

to opt for a personalization approach in order to facilitate innovative solutions with

minimal bureaucracy. However, choosing between codification and personalization

need not be a black or white choice. A combination of the two strategies, what Desouza

et al. (2006) call a hybrid approach, probably suits typical architecting activities best.
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Figure 3.4: Architectural knowledge management strategies in research and industry

3.5 Justification

Our overview of the state of the art in architectural knowledge management is based

on an extensive literature review that consisted of three stages. In the first stage (com-

pleted early 2007), we performed an ad-hoc, preliminary review of architectural knowl-

edge management strategies. At that point in time, architectural knowledge was often

still equated to ‘architectural design decisions’; consequently we focused our analysis

on approaches that had what we would now call either a ‘decisions-in-the-narrow’ or

‘decisions-in-the-large’ philosophy of architectural knowledge management.

In the second stage (completed early 2008), based on a predefined protocol we

identified, selected, and synthesized all studies that define or discuss ‘architectural

knowledge’. In the third stage (completed late 2008), we employed social network
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analysis to identify the communities in which architectural knowledge plays a role.

The results of our review have been presented in a logical, rather than chronologi-

cal, order in this chapter. In particular, the results of the 2007 studies are mostly to be

found in §3.4. This made it possible to first discuss what architectural knowledge is,

followed by a reflection on how to manage it.

In the remainder of this section, we further detail the systematic steps we followed

in the second stage (§3.5.1 and §3.5.2) and the third stage (§3.5.3) of our review.

3.5.1 Systematic review protocol

Our discussion in this chapter is a typical example of secondary research (or ‘desk

research’) in which the results of different primary studies are combined through some

form of meta-analysis. For the primary studies, we rely only on studies that have been

published in the literature.

In a literature review such as ours, there are two important considerations: how

to select the primary studies, and how to perform the required meta-analysis. We

have chosen to perform a systematic review for selecting studies and to use a meta-

ethnographic approach as part of that systematic review for synthesizing the gathered

data.

Studies selection

There are basically two ways of performing a literature review: (1) an ad hoc review,

and (2) a systematic review. The main difference between the two is the formality and a

priori planning of the systematic approach. In a systematic review, a protocol is defined

that specifies the research questions to be answered, as well as the manner in which data

will be gathered. This contrasts with the ad hoc manner of conventional literature re-

views. Systematic reviews are a heavily used instrument in (evidence-based) medicine.

Work by various authors (e.g., (Biolchini et al., 2005; Dybå et al., 2007; Kitchenham,

2004)) has led to guidelines for applying systematic reviews to the domain of software

engineering as part of the evidence-based software engineering paradigm.

Biolchini et al. (2005) propose a protocol template for systematic reviews in soft-

ware engineering. Their template combines review protocols from the medical field

with earlier work on evidence based research and systematic reviews in software en-

gineering. We have used Biolchini’s template to develop a protocol for our systematic

review of definitions of ‘architectural knowledge’. The main elements of this protocol

are given below.

∙ Problem. The problem we address is that there appears to be no commonly ac-

cepted definition of what architectural knowledge entails. This makes it a fuzzy
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concept, and makes the current understanding of what architectural knowledge

entails unclear. This may evidently introduce misunderstandings when different

authors use different definitions for the same concept.

∙ Research questions. Particular research question our systematic review should

answer are:

– 1. What are the different definitions of ‘architectural knowledge’, and how

are they related?

– 2. What concepts are deemed related to ‘architectural knowledge’?

∙ Sources list. Since we are interested in definitions of architectural knowledge

in the context of software-intensive systems, we include the major publishers of

and indexes that contain software engineering related publications:

– ACM Digital Library

– IEEE Xplore

– ISI Web of Science

– SpringerLink

– ScienceDirect

– Wiley Inter Science Journal Finder

∙ Search string. We are interested in architectural knowledge in the context of

software-intensive systems (and not in the context of, for example, civil archi-

tecture). Furthermore, we are aware that some authors prefer to use the phrase

‘architecture knowledge’ over ‘architectural knowledge’. We assume that a defi-

nition of ‘architectural knowledge’ is not present in a study if the phrase itself is

not present. We therefore want to search for publications that contain either the

word ‘software’ or ‘system’ and the phrase ‘architecture knowledge’ or ‘archi-

tectural knowledge’. Therefore, the search string we use is:

(‘architectural knowledge’ OR ‘architecture knowledge’) AND (‘soft-

ware’ OR ‘system’)

∙ Studies inclusion/exclusion criteria Studies to be included in our review:

– Must have ‘architecture’ as topic (and not, for instance, present an archi-

tecture for a particular system)

– Must be about architecture of software-intensive systems (and not about,

for instance, civil architecture)
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– Must have ‘real’ content (hence not a TOC, cover page, advertisement, etc.)

– Must be in English

– Must discuss ‘architectural knowledge’

Data synthesis

A potential problem with common meta-analytic approaches in systematic reviews is

their focus on integration of quantitative data. Dybå et al. (2007) address the limited

applicability of this type of meta-analysis to software engineering research.

Our review in particular is not very well suited for quantitative techniques, since

the primary studies we address can be expected to be mostly grounded in qualitative

research. Instead of a quantitative approach we therefore need a qualitative approach to

data synthesis. Based on the experiences from Dybå et al., we chose meta-ethnography

as the approach to synthesize the selected studies.

Meta-ethnography was proposed by Noblit and Hare (1988) as a form of inter-

pretive synthesis. Meta-ethnography relies on the translation of key concepts and

metaphors of different studies into one another, for which there are three strategies. In

reciprocal translational analysis, concepts from different studies are directly translated

into each other. In refutational analysis, contradictions between studies are character-

ized. In lines-of-argument synthesis, a general interpretation is grounded in the find-

ings of separate studies. For our review, we performed reciprocal translational analysis

of the concepts that different authors use in defining and characterizing ‘architectural

knowledge’.

3.5.2 Systematic review execution

The execution of our research commenced early January 2008. As a consequence,

our review includes studies that were published and/or indexed before that date. We

cannot be certain that we have covered all studies with a publication date in 2007, since

especially the studies from Q4 may not have been indexed yet at the time we conducted

our review.

Studies selection

Since one cannot expect a definition of ‘architectural knowledge’ always to be found

in the abstract of a study, we run the risk of missing relevant studies when we limit our

search to abstracts only. We therefore conducted a full-text search in the six identified

sources, which resulted in a list of 751 studies that matched the search string.
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First iteration: Scanning titles We evaluated compliance of the studies found with

the inclusion criteria in four iterations. In the first iteration, we read only the titles of the

identified studies and indicated (independently of each other) whether we considered

the study out of the scope of our review, i.e., we could indicate at least one inclusion

criterion for which it was clear from the study’s title that it would not be met. In this

phase, only if we both agreed on at least one exclusion criterion the study was excluded

from our review. If, for example, we both determined from the title of the study that it

was not in English we would exclude it. If, however, one of us found for instance that

the study was not about architecture and the other concluded that the study was in fact

about architecture but not about architecture of software-intensive systems, the study

would remain in the set of studies to be analyzed in the second iteration.

Second iteration: Reading abstracts At the start of the second iteration we had 396

studies left, which means that we were able to exclude more than 45% of the studies by

reading the title alone. In this iteration we followed the same procedure as in the first

iteration, but instead of reading only the titles of the studies we now read the abstracts

as well. After this iteration we were able to eliminate another 140 studies, which left

us with 256 studies.

Third iteration: Scanning full-text In the third iteration we did a full-text scan of

the studies. Based on this scan we again assessed the studies’ compliance with our

inclusion criteria. Because of the amount of work involved, half of the 256 studies

was independently assessed by each researcher. In this third iteration, we particularly

focused on the phrases ‘architectural knowledge’ and ‘architecture knowledge’, which

were part of the search string and therefore must be present in the text. Apart from

various studies that were out of scope because they discussed for example the field of

civil architecture, we found that a number of studies did not contain the phrase ‘archi-

tectural knowledge’ as we had intended it. For example, some studies only referred

to other studies that happened to have ‘architectural knowledge’ in their title, or the

full-text query that we executed had registered a match on only the keywords (e.g.,

‘software architecture; knowledge engineering’). Both researchers gathered evidence

from the full text of the studies to support their assessment of in- or exclusion. This

evidence (mainly literal quotes from the full text) was thereafter discussed and only

when both researchers agreed that the study did not meet the inclusion criteria it was

excluded. Whenever necessary, the full text of the study itself was consulted during

this discussion. In this way, we were able to exclude another 80 studies, leaving us

with 158 studies.
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Fourth iteration: Reading full-text In the fourth, and final, iteration the full text

of the studies was not scanned, but thoroughly read. It was only in this phase that we

could really assess whether a study did or did not discuss ‘architectural knowledge’. In

some studies, while the study did use the phrase ‘architectural knowledge’ it remained

completely unclear what the authors considered to be architectural knowledge. For ex-

ample, a study could talk about ‘architectural knowledge present in the organization’

without the definition or scope of such architectural knowledge further being discussed

in the text. Those studies were excluded from the review. After this iteration we were

left with a total of 116 studies in which the authors talk about architectural knowledge

in more or less concrete terms, i.e., the authors either provide a clear definition, or dis-

cuss several concepts related to ‘architectural knowledge’. As it turns out, the latter is

much more common. Quite a lot of studies address the notion of architectural knowl-

edge, but many of them refrain from explicitly stating what architectural knowledge

entails. Out of the 116 publications we found, only 14 studies define what the authors

consider architectual knowledge.

Data synthesis

The high number of studies (116) that matched our inclusion criteria made it infeasible

to translate all studies found into each other. Since we were particularly interested in

how architectural knowledge is defined, we decided to limit the meta-ethnographical

synthesis to the 14 studies that provide a definition of architectural knowledge. To these

studies, we applied reciprocal translational analysis in two ways.

We first focused on the concepts explicitly used in the different definitions. By

translating those concepts into each other, we were able to identify four areas from

which – according to the 14 definitions – architectural knowledge originates: problem

domain, design decisions, solution fragments, implementation, and systems design.

3.5.3 Social network analysis

Since we are interested in the community structures that underly the topic of archi-

tectural knowledge, we enriched our dataset with bibliographical links. We assume

the community structure can be found, or approximated, by taking into account the

bibliographical references that various authors make to each others work. Strong com-

munities will display many intra-community references, and relatively few references

to work outside the community.

In the systematic literature review of studies that define or discuss ‘architectural

knowledge’, we identified 116 such studies. These 116 studies form the basis for our
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discussion in this chapter. Consequently we will refer to these studies as the set of core

studies (C).

There are two types of bibliographical references: references from studies in C to

other studies, and references to studies in C from other studies. We will use B (for

‘bibliography’) to denote studies that are referred to from studies in C, and R (for

‘referring’) to denote studies that refer to studies in C. Hence, the mapping R → C →
B summarizes the enriched data set used throughout this chapter.1

To determine B, we simply took all references listed in the 116 studies from C. To

determine R, however, we had to do a ‘reverse search’ on the studies in C, since the

information needed is not present in C itself. For construction of R, we used the Google

Scholar search engine which provides such a reverse search facility through its ‘cited

by’ feature. While constructing R and B, we also obtained results not necessarily found

in sources from the sources list identified in our systematic review. We do not see this

as a limitation of our methodology. The goal of the dataset enrichment is different from

the initial identification of primary studies in the systematic review; in the enrichment

we are interested in community structures, and the different communities need not be

limited to studies published through and indexed by the sources used for the review.

Together, B, C, and R comprise a ‘social network’ of scholarly publications and

their interconnections. We analyzed this network using the Girvan-Newman algo-

rithm (Girvan and Newman, 2002). The Girvan-Newman algorithm discovers com-

munities in a graph, based on the ‘betweenness’ of edges, i.e., the number of shortest

paths that run through an edge. The algorithm iteratively calculates the edge between-

ness and removes the edge with the highest betweenness value, eliminating edges that

act as connections between different communities. Eventually, the algorithm results in

a fully disconnected graph of ‘communities’ that consist of a single node.

Obviously, a disconnected graph is not the strongest community structure possible.

Newman and Girvan (2004) define the modularity (Q) as a measure of strength of

the community structure discovered in a network. High values of Q (0 ≤ Q ≤ 1)

indicate networks with a strong community structure. Their empirical evidence shows

that local maxima of Q correspond to reasonable community divisions, hence it is good

practice to stop the Girvan-Newman algorithm when a (local or global) maximum Q-

value has been obtained. In our case, the first local maximum of Q occurred when

the graph had been split up in 52 communities, while the global maximum occurred at

59 communities (Q ≈ 0, 7832), which is extremely high (according to Newman and

Girvan, values above 0.7 are rare; typical values fall in the range 0.3−0.7). Because of

the data enrichment process we followed and the way the Girvan-Newman algorithm

1Note that B, C, and R are not completely disjoint; there are several occurrences of studies from C

referring to other studies from C. Also, publications that are referred to from one study in C may themselves

refer to other (earlier) studies from C.
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works, each of these 59 communities consists of at least one study from C, plus zero

or more publications from either B or R.

In order to assign meaning to the 59 communities that came out of the algorithm we

examined the set of studies for each of these communities in turn, and gave them a label

that corresponded best to the studies in that community. Often, the non-core studies in

the community did help in further characterizing the community and helped in phrasing

a suitable label. When this was more difficult (for example when the non-core studies

varied too much in subject), we looked more specifically at the core studies in that

community since these actually talk about architectural knowledge and can therefore

lead to more fitting for the community name. In the end we ended up with 59 labels for

the communities, although some overlapped to a certain extent.

In order to find out how exactly the communities had been discovered by the Girvan

Newman algorithm we examined the hierarchical structure of the identified communi-

ties. The hierarchical relations capture the order in which the communities have been

identified. Based on the order of community-split-ups we could assign names to larger-

order (i.e., parent) communities as well.

According to our definition a community should consist of at least two core studies

(that talk about architectural knowledge) written by different authors. Based on this

rule we further analyzed the data. We limited the number of main communities by

removing the single-core-study ones and the ones consisting of merely studies by the

same author(s). In the end this refinement culminated into the four main communities

discussed throughout this chapter: pattern-centric, dynamism-centric, requirements-

centric, and decision-centric.

3.6 Conclusions

Conducting a systematic review is obviously more enduring and time-consuming than

a more ad hoc overview of related work, but we feel it is well worth the extra effort.

By systematically scrutinizing available literature, we obtained an understanding of the

domains in which the concept is used, the different definitions of architectural knowl-

edge, and how these are related. A potential and obvious drawback of this approach

is the reliance on the search string used. Communities that discuss topics related to

architectural knowledge but never use that phrase itself are per definition not included

in our analysis. However, given our goal to investigate current definitions of architec-

tural knowledge we do not see the exclusion of communities that do not use the literal

phrase – let alone define it – as a shortcoming.

Based on the number of publications that discuss architectural knowledge, we see

an increasing interest in the subject matter. However, only a small percentage of those
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studies (14 out of 116 publications) propose or refer to a definition of architectural

knowledge. Most of those definitions focus on design decisions, although some refer

to solution fragments or elements from the problem domain as well.

We found two surprising definitions of architectural knowledge. One surprise was a

definition of architectural knowledge often used in the broad area of systems design, ap-

plied to the development of software intensive systems by two authors. This definition

is orthogonal to the definitions of architectural knowledge in software development,

but at the same time seems related given its application to characterize different soft-

ware development projects by one of the authors. The other surprise was a definition

of architectural knowledge coined in 1996, remarkably similar to recently proposed

definitions that focus on design decisions. Between 1996 and 2005, no definitions or

references thereto were published in the literature. It seems as if this early definition

was forgotten and almost reinvented after nearly a decade.

We were somewhat disappointed by the low number of actual definitions (or ref-

erences thereto) in the current literature. We attribute this low number of definitions

to the relatively recent focus on architectural knowledge. The fact that 7 out of the

14 definitions come from studies that were published in 2007 leads us to believe that

we will see more definitions being coined and discussed in the near future. We are

unsure whether the perfect definition of architectural knowledge that everyone agrees

upon will ever be found, but we do want to urge researchers to be precise and concrete

in defining the concepts they consider part of architectural knowledge. In this way,

ambiguity can be prevented and the community as a whole can work toward a better

common understanding of the scope and span of ‘architectural knowledge’.

When it comes to management of architectural knowledge, both research and in-

dustry have an intentional focus on the codification strategy. However, seeing that

most intentional codification efforts in industry suffer from various shortcomings, or-

ganizations seem to rely on unintentional personalization as the primary architectural

knowledge management strategy. This suggests that there is a gap between what re-

searchers are working on and the practice in the industry. We think both personaliza-

tion and codification serve purposes for managing architectural knowledge, and both

strategies as well as hybrid combinations should be investigated in more detail in the

future. Furthermore, the industry should be aware of the implicit choices they make in

architectural knowledge management, and strive for an explicit, intentional, choice of

strategy.

We expect the interest in architectural knowledge to keep increasing over the com-

ing years. Although it is unlikely that we will see a fully unified view on architectural

knowledge anytime soon, the observed trends in architectural knowledge management

indicate that future developments on managing architectural knowledge may further

align the different views. We expect the trend towards ‘decision-in-the-large’ to con-
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tinue, since both researchers and practitioners aim for a better understanding of what

architects do, what their knowledge needs are, and how this architectural knowledge

can best be managed in the architecting process. It seems likely that this trend contin-

ues in the direction of hybrid strategies so that the industrial need for a personalization

strategy is also intentionally supported.
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4
A Core Model of Architectural

Knowledge

In the previous chapter we saw that there is not a single view on architectural knowl-

edge. In this chapter, we present a core model of architectural knowledge that unifies

existing, decision-centric models and provides a common frame of reference regarding

what architectural knowledge entails. Practical applications of the core model include

inter-organizational and intra-organizational exchange of architectural knowledge.

4.1 Introduction

Various authors address the notion of ‘architectural knowledge’ and provide models or

definitions of what this notion entails. Key elements in all models are design decisions

and their rationale (see Chapter 3). However, different authors use different words for

what might be the same. For example, some models consider design decisions, others

architectural decisions, but it is hard to determine whether these actually denote the

same concept.

Having different notions of what architectural knowledge entails can hamper ef-

fective management of that knowledge. If, for instance, different organizations – or

even departments within a single organization – use different concepts to communicate

architectural knowledge, terminological misunderstandings may arise. It then becomes

very hard, if not impossible, for these parties to exchange architectural knowledge. To

enable architectural knowledge exchange, we need a model of architectural knowledge

that acts as a common frame of reference.

In this chapter, we propose a reference model of architectural knowledge that has

maximal expressivity in the architectural knowledge domain. Other models of what ar-
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chitectural knowledge entails can be expressed in the form of extensions to this model.

These extensions may be domain-specific, organization-specific, or both.

4.2 Research Methodology

The structure of this chapter, schematically depicted in Fig. 4.1, is tightly coupled to

the research approach we followed. In the remainder of this section we outline the

research methodology we employed, the steps we followed, and in which sections the

respective results are elaborated upon.

The approach we followed can best be described as an instantiation of action re-

search. Action research is an iterative research approach in which the researcher ac-

tively participates in the studies he performs. The researcher wants ‘to try out a theory

with practitioners in real situations, gain feedback from this experience, modify the

theory as a result of this feedback, and try again’ (Avison et al., 1999).

‘Action research’ is not a single well-defined method; many different forms of ac-

tion research exist. Canonical action research is “one of the more widely practiced

and reported forms of action research in the information systems literature” (Davison

et al., 2004). Canonical action research (CAR) is based on the five stage cyclic model

presented in (Susman and Evered, 1978), which consists of the stages diagnosis (iden-

tifying a problem), action planning (considering alternative courses of action), action

taking (selecting a course of action), evaluating (studying the consequences of an ac-

tion), and specifying learning (identifying general findings). Although it is difficult to

concretely distinguish the individual stages, the jest of the CAR cycle is clearly present

in our approach.

Our research commenced with designing a ‘theory’ of architectural knowledge de-

scribed in §4.3.1. This initial model of architectural knowledge is described in §4.3.2.

We then experimented with the model, and tried to characterize the use of architectural

knowledge by (and together with) four industrial partners: RFA (a large software de-

velopment organization), VCL (a multi-site consumer electronics manufacturer), DNV

(an SME involved in performing independent software product audits), and PAV (a

scientific institute). Experience from the characterization attempts taught us that there

were a number of mismatches between our theory and industrial practice. Reflection

on the apparent mismatches led us to conclude that we should strive for a model of

architectural knowledge that is both minimalistic and complete.

In order to accommodate for the desired properties, we refined the initial model.

We hence arrived at a new ‘version’ of our theory of architectural knowledge, which

we present in §4.4. Due to the properties of this new model, we refer to it as a ‘core

model’ of architectural knowledge.
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Figure 4.1: Structure of this chapter

With the mismatches between theory and practice removed, we could successfully

employ our core model to characterize the use of architectural knowledge by the four

partners. This characterization, which is the subject of §4.5, led to a number of hy-

potheses regarding the probable cause of problems with architectural knowledge man-

agement in the collaborating organizations.

Since we want our model to be useful as a reference model to align different archi-

tectural vocabularies, we regard our core model as ‘valid’ when concepts from different

architectural approaches can be expressed using terms from the model. Unfortunately,

it is impossible to strictly prove that our model is valid in this sense. However, we can

make the validity of the core model plausible by trying to falsify our model by com-

paring the model with (accepted) literature. This falsification attempt is discussed in

§4.6.

4.3 An Initial Theory of Architectural Knowledge

To construct our initial theory of architectural knowledge, we used the FRS method, a

domain modeling method originally developed within Philips Research (Philips, 2004)

as an extension of the KISS method (Kristen, 1995). In §4.3.1, we present how we

used this method. Since the method targets both domain objects and domain actions,

the resulting model (presented in §4.3.2) captures both static and dynamic aspects of

the architecting process, as well as the relations between them.
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The basic stages for constructing a domain model are knowledge elicitation, knowl-

edge structuring and knowledge specification. For elicitation, the FRS method relies

on natural language; for structuring it uses packages, objects, and actions; and for

specification it uses an object-interaction model.

Elicitation: Natural language Natural language text can be acquired in numerous

ways, e.g., by analyzing (transcriptions of) interviews with domain experts, through

scenario authoring, or through brainstorm sessions. Written documents can also be

taken into account. Grammatical analysis of the acquired text provides a way of iden-

tifying candidate concepts. This analysis uses the sentences that express either some

activity or a relation, such as specialization, composition, or aggregation. These sen-

tences show how domain objects are changed, and which static relations exist between

them. The direct object and indirect object(s) of a sentence are candidate objects in the

domain. The verb(s) correspond to candidate actions when they indicate a change for

the associated objects. Candidate actors are the subjects of the sentences.

Given for instance the sentence ‘An architect discusses requirements with the cus-

tomer, and they agree on a specification.’, the candidate actors are ‘architect’ and ‘they’,

the candidate objects are ‘requirements’, ‘customer’, and ‘specification’, and the can-

didate actions are ‘to discuss’ and ‘to agree’.

Structuring: Packages, objects, and actions The FRS method applies knowledge

structuring at two levels: structuring the domain itself in ‘packages’, and structuring the

knowledge contained in each individual package. Packages provide a general grouping

mechanism. By grouping domain concepts, potentially large and complex models can

be developed and managed more effectively. The packages divide the modeling efforts

into coherent subdomains with a limited scope.

One of the advantages of using packages is that it provides a means to ‘divide-and-

conquer’; it is often easier to focus on the contents of a single package instead of on

the whole domain. Packages also help in disambiguation of terminology, since they

provide a ‘namespace’ for their contents.

Structuring a domain in packages has another benefit. It can also aid in assessing

the model quality. By viewing each domain concept as ‘owned’ by a single package,

even if it also used in other packages, a dependency between packages emerges. This

dependency can be further analyzed. For instance, cyclic dependencies might indicate

a need to reorganize package contents.

Within each of the packages, the elicited knowledge is structured in more detail.

This is done by identifying domain objects and domain actions from the set of can-

didates. Domain objects represent the static concepts in a domain. Domain actions
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change the state of one or more domain objects, and reflect the dynamic concepts in

the domain. Domain objects and actions are related by a participation relation, i.e.,

objects participate in an action.

To guide the knowledge structuring process, the FRS method defines the following

modeling rules with respect to the introduction and elimination of domain concepts.

∙ A domain object must have a unique identity, and may only be introduced when

it undergoes actions in the domain that are specific to that object.

∙ A specialization relation may only be introduced when two or more objects share

a participation relation. A good indication of a specialization relation is a juxta-

position of nouns, e.g., a ‘design artifact’ is an ‘artifact’.

∙ Every object must have an associated instantiating action. Moreover, the ob-

jects should be unique, which means that synonyms from the elicitation stage

should be merged. Homonyms within the same package, or namespace, should

be renamed to provide unambiguous terminology.

Specification: Object-Interaction model The FRS method combines static and dy-

namic aspects of a domain at the class level. For this reason it prescribes the use of

an object-interaction model, which captures the possible objects and actions in the do-

main.

An FRS object-interaction model1 contains constructs familiar from UML, a mod-

eling notation often used in software engineering. UML contains constructs to describe

static aspects of a domain, e.g., through class diagrams. It can also describe dynamic

aspects, e.g., through activity diagrams. UML, however, does not allow the combina-

tion of these two aspects in a single diagram at the class level.

Unlike standard UML, the FRS object-interaction model allows the combination of

static and dynamic aspects. While domain objects are represented as UML classes, do-

main actions are depicted as UML classes of an additional stereotype ‘domain action’,

represented by the standard UML activity symbol. Participation relations are drawn

as UML associations between domain objects and actions. The association name cor-

responds to the role of the object in the action. Specialization relationships are repre-

sented as standard UML generalizations. In addition to these standard UML constructs,

instantiating participations are represented by an arrow at the end of the instantiated ob-

ject.

The object-interaction model corresponding to the sentence ‘An architect discusses

requirements with the customer, and they agree on a specification.’ is depicted in

Fig. 4.2.

1UML also has the notion of an object-interaction diagram, which has a different connotation, though.
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Figure 4.2: Example object-interaction model

When validation of the resulting object-interaction model indicates missing infor-

mation, the model may be further refined. Validation and refinement are aided by the

application of the rules that are listed in the previous section. This refinement is an-

other iteration of knowledge structuring, which can be preceded by further knowledge

elicitation when necessary.

4.3.1 Design

In this section, we outline how we modeled the architectural knowledge universe of

discourse using the FRS method. A schematic overview of the process we followed is

depicted in Fig. 4.3 and elaborated upon below. The abbreviations ‘E’, ‘St’, and ‘Sp’

used below denote elicitation, structuring, and specification of knowledge respectively.

Package identification [St]

We used the package construct to split the architectural knowledge domain into various

subdomains. Each package covers part of the domain.

A schematic outline of the architecting process is depicted in Fig. 4.4. This figure

shows the stakeholders as being central to the architecting process. This corresponds

to the notion that a software architecture should be stakeholder-driven (cf. e.g., (Bass

et al., 2003)). The stakeholders, in particular the architects, take decisions according to

their roles. These decisions can be influenced by environmental events, i.e., events that

are relevant but in principle do not belong to the software architecting and development

realm. This includes technical, business, organizational, political, and economic events

such as the establishment of budget constraints. The decisions are reflected in design

artifacts and architectural descriptions, e.g., documented views, but also ‘lower-level’

artifacts such as source code. A stakeholder responsible for an artifact changed due
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Figure 4.3: Outline of the design process followed

to a decision might find a need to take subsequent decisions. The responsibilities are

defined by the stakeholders’ role(s).

The schematic outline in Fig. 4.4 shows the interdependencies between architec-

tural design decisions and design artifacts. In managing the architectural body of

knowledge, the elements from this figure must be taken into account. Together, the

architecting process, the stakeholders and their roles, their decisions, the architectural

descriptions, and the environment sketch the outline of the architectural knowledge

universe of discourse. We initially identified five packages, corresponding to these ar-

eas; ‘Stakeholder’, ‘Decision’, ‘Process’, ‘Description’, and ‘Environment’. For each

of these packages, the following activities have been carried out.

Domain knowledge elicitation [E]

Textual domain knowledge was acquired from various sources, including interviews

with software architects, literature, standardization bodies, and our own experience.

55



CHAPTER 4. A CORE MODEL OF ARCHITECTURAL KNOWLEDGE

Environment

Architectural Design 

Decisions

Responsibilities & Roles

Architectural

Descriptions & 

Design Artifacts

Figure 4.4: Schematic outline of the architecting process

Besides experience with software architecture - partially captured in interview tran-

scripts, partially our own - literature and standards were used as a source of domain

knowledge. We used the IEEE-1471 standard for architectural descriptions of soft-

ware intensive systems (IEEE 1471) as a basis for the ‘Description’ and ‘Stakeholder’

packages. The OMG’s Software Process Engineering Metamodel (OMG, 2005a) stan-

dard was the foundation of the ‘Process’ package. Initial research on design decisions,

such as (Tyree and Akerman, 2005), helped shaping the ‘Decision’ package. Due to

a lack of literature on the environment of software architectures, the contents of the

‘Environment’ package remained open.

We were not particularly interested in the possible actors of an action, but rather in

the action itself. To this end, the distilled sentences were ‘anonymized’ by replacing

the subjects with ‘someone’. So, instead of ‘the architect takes a decision’, we write

‘someone takes a decision’.

During domain knowledge elicitation, redundant sentences are not yet filtered out.

For example, the sentences “Someone takes a decision”, “Someone chooses an alter-

native from a set of solutions”, and “Someone picks an option” probably bear the same

meaning. Chances are that these sentences will be merged during the rule application

phase.

Domain analysis [E]

Grammatical analysis of the relevant sentences led to a set of domain objects as well

as the most important actions on these objects. Based on the example sentences above,

candidate objects are decision, alternative, solution, and option. Candidate actions for

our domain model are ‘to take’ (a decision), ‘to choose’ (an alternative), and ‘to pick’

(an option).
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Rule application [St]

Although listed as a separate phase, rule application took place for a large part in com-

bination with domain analysis. In this phase, we judged among others the relevance

of the sentences identified in the knowledge elicitation phase. This influences the sen-

tences that are subject to the grammatical analysis in the previous phase.

For instance, we determined that the sentences “Someone chooses an alternative

from a set of solutions” and “Someone picks an option” have exactly the same meaning;

both the concepts ‘to pick’ and ‘to choose’ as well as ‘alternative’ and ‘option’ are

interchangeable. Therefore, we eliminated one of the sentences from the set. The

remaining candidate concepts were then further scrutinized. This led to the insight that

‘alternative’ and ‘solution’ refer to the same object. Since the alternative is chosen

from a set of solutions, the alternative itself must be a solution. Furthermore, taking

a decision can be seen as choosing from a number of alternatives. In other words,

the chosen alternative is the decision. However, not every alternative is, or will be, a

decision. This means that they both are unique domain objects.

Model construction [Sp]

By adhering to the FRS method’s diagramming instructions, we constructed for each

package an (initial) object-interaction model. See Fig. 4.5 for an example of the ‘De-

cision’ package.

Model refinement [St]

For most packages, the object-interaction model from the previous phase was not yet

mature enough to be considered the end result. In the model refinement phase, we

took each initial model and analyzed it for inconsistencies, and missing or superfluous

information. This phase can be seen as another iteration of the previous phases.

As part of this phase, we also presented the model to the members of our research

team that were not directly involved in the modeling process. We provided them not

only with the graphical representation of the model, but also with the exact sentences

reflected in the diagrams. These sentences can be reconstructed by generating a sen-

tence for each domain action and its associated objects depicted in the model. For

instance, the action ‘to choose’ in the model depicted in Fig. 4.5 corresponds to the

sentence “Someone chooses from a number (0 . . . n) of alternatives based on a rank-

ing, which results in a decision”.

Based on this analysis, we solved a number of problems with the initial version of

the model. Recurring problems were objects without instantiating actions, the need for

a specialization relation, and domain objects or actions we had initially overlooked.
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Package ‘Decision’

Domain knowledge elicitation:

∙ Someone takes a decision
∙ Someone cancels a decision
∙ Someone executes a decision
∙ Someone chooses an alternative from a set of solutions
∙ Someone compares different alternatives
∙ Someone takes a decision on a certain topic
∙ Someone proposes an alternative
∙ Someone picks an option
∙ ...

Domain analysis:

∙ Alternative: A potential solution to a decision topic.
∙ Criterion: A condition in which alternatives can be distinguished.
∙ Decision: The choice of one from among a number of alternatives.
∙ Decision topic: A specific problem to be solved by the decision process.
∙ Ranking: The result of ranking, i.e., evaluating alternatives with respect

to a criterion.

Model construction:

Alternative

Decision

to cancel

Decision topic

to propose

to choose

to rank

Criterion

Ranking

to simulate

to execute

is a

w.r.i. based on

w.r.i.

based onfor

0..n

1..n

1..n

from

Figure 4.5: Constructing package ‘Decision’

Objects without instantiating actions are a direct violation of the rule that every object

must have an associated instantiating action. Instantiating actions were therefore intro-

duced for these objects. The need for a specialization relation is often indicated by one

object having the same association with two distinct objects. This need is satisfied by

adding an object with a specialization relation to the latter two objects.
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Package alignment [St/Sp]

During the refinement of the individual packages, more and more overlap between the

packages started to emerge. Domain objects that were present in one package were

also needed in other packages. In particular, (candidate) objects for the ‘Stakeholder’

package - which had not yet been completely refined - started to appear in all of the

‘Decision’, ‘Description’, and ‘Process’ packages. Furthermore, cyclic dependencies

were starting to emerge. This was the trigger to try and align the individual packages

into one coherent structure.

The alignment led to some further insights, and can perhaps be regarded as another

refinement phase. For instance, the criterion that is used for ranking in the decision

making process coincides with a stakeholder’s concerns. Similarly, a stakeholder’s

concern is tightly linked to a decision topic that needs to be addressed.

Up until this moment, our efforts to model the ‘Environment’ package had only

resulted in a list of possible external forces that might impact the architecture. Since

the ‘Environment’ package had to be the representation of the ‘outside world’, it had

in essence an unlimited scope. Therefore, it was possible to come up with new domain

objects time and again. It turned out to be very hard to devise a structure that sensi-

bly represents the whole environment. We decided that the best solution would be to

capture the environment in a single domain object, dubbed ‘External event’.

4.3.2 A model of architectural knowledge

The result of the package alignment phase is depicted in Fig. 4.6. In this figure, the

rectangular elements represent entities; the elliptical ones denote actions on or with

these entities. Arrows indicate the creation of new instances of an entity. Dashed

lines represent attribute relationships. Sub-/superclass relationships are represented as

generalizations (OMG, 2005b). Actions and entities that are linked together can be read

as sentences, e.g “Someone chooses an alternative based on a ranking which results in

a decision”.

We tried to use this initial model of architectural knowledge to characterize the use

of architectural knowledge in the four industrial organizations RFA, VCL, DNV, and

PAV. This taught us that the model did not entirely fit all organizations. For example,

the original model highly conformed to the IEEE-1471 standard for architectural de-

scription (IEEE 1471). This standard prescribes the use of so-called ‘Viewpoints’ to

describe the architecture from the perspective of different stakeholders. The resulting

‘Views’ (partial descriptions of the architecture) are aggregated in a single architecture

description. Although stakeholders and their concerns play a key role in any software

architecting process, the tight coupling of the model to IEEE-1471’s Views and View-
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Figure 4.6: Initial theory of architectural knowledge

points turned out to be a mismatch with most organizations’ practice. In hindsight this

need not come as a big surprise, since organizations can (and do) use other approaches

for documenting their architectures, which need not coincide with the IEEE-1471 way.

Although the initial model did not entirely fit all organizations, diagnosis of the

use of architectural knowledge in those organizations at least showed that each of the

organizations had its own perspective on architectural knowledge management, result-

ing in different issues at each of the organizations. The central issue within RFA was

how to share architectural knowledge between stakeholders of a project. The main
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question within VCL was how compliance to architectural rules can be enforced in a

multi-site environment. DNV was mainly concerned with how auditors can discover

the architectural knowledge they need to perform an audit. The main challenge for PAV

was how to improve traceability of its architectural knowledge. While the mismatches

between theory and practice still prevented us from pinpointing the exact areas of im-

provement, at least we had an idea where to search for those areas in a next research

iteration. However, this required that we removed the identified mismatches to further

align theory with practice.

From a closer inspection of the mismatching concepts we learned that those con-

cepts could either be expressed in terms of other concepts already present in the model,

or as more generic concepts that are used by the organizations. This motivated us to

restructure the model from Fig. 4.6. The restructured model has maximal expressivity

in the architectural knowledge domain using a minimal set of core concepts. For this

reason, we refer to the restructured model as a ‘core model’ of architectural knowledge.

Elements in the core model cannot be expressed by using other elements in the core;

elements that can be modeled in terms of core elements do not belong to the core:

∙ Both IEEE-1471 concepts of Architectural Model2 and View are subsumed in the

notion of ARTIFACT, i.e., an inanimate information bearer such as documents,

source code, or books.

∙ Storing or describing the ARCHITECTURAL DESIGN in either of these artifacts

can be abstracted to a single action ‘to reflect’.

∙ The IEEE Viewpoint is a specific instance of a language used to reflect the ar-

chitectural design in an artifact. The core model substitutes the more generic

concept LANGUAGE for Viewpoint.

∙ An External Event that matters to any of the stakeholders can be expressed as a

CONCERN of that STAKEHOLDER. Without external events there are no Forces

or Architectural Drivers other than (ARCHITECTURAL DESIGN) DECISIONs,

which removes the need for these concepts in the core model as well.

∙ The ENFORCEMENT of a decision upon the design is synonymous with the for-

mer notion of execution of an ARCHITECTURAL DESIGN DECISION.

The only change not related to removing concepts that can be expressed in terms

of other core concepts, is that in the core model we view DECISION TOPIC no longer

2In this discussion, italic terms denote concepts only present in the initial model, while terms in SMALL

CAPS are concepts (also) present in the core model. Likewise, in the remainder of this chapter italic terms

denote concepts from non-core-models.
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as a part of a CONCERN, but rather as a special type of CONCERN itself, namely a

CONCERN for which a DECISION must be taken. Although this distinction was also

present in the initial model, and hence does not conflict with the earlier interpretation,

the new view makes the distinction clearer and more explicit. We shall discuss the

interpretation of the core model in more detail in the next section.

4.4 A Core Model of Architectural Knowledge

In the core model of architectural knowledge, depicted in Fig. 4.7, the concepts of

STAKEHOLDER and CONCERN coincide with the, widely accepted, definitions of these

terms in IEEE-1471: a stakeholder is “an individual, team, or organization (or classes

thereof) with interests in, or concerns relative to, a system” (IEEE 1471). Both IEEE-

1471 concepts of Architectural Model and View are subsumed in our notion of ARTI-

FACT. The ARCHITECTURAL DESIGN can be reflected using different LANGUAGEs,

including models, figures, programming languages, and plain English.

Constructing an architectural design is essentially a decision making process. In

our core model, decision making is viewed as PROPOSING and RANKING ALTERNA-

TIVEs, and SELECTING the alternative that has the highest rank, i.e., the alternative

that, after careful consideration based on multiple criteria (i.e., CONCERNs), is deemed

to be the best option available with respect to the other alternatives proposed. It is

especially this process of proposing, ranking, and selecting which is hard to articulate

and distinguishes the good architects from the weaker. The chosen alternative becomes

the DECISION. The alternatives that are proposed must address the DECISION TOPIC,

and can be RANKED according to how well they satisfy this and other concerns. We

view DECISION TOPIC as a special type of CONCERN, namely a CONCERN for which

a DECISION must be taken. Example concerns for which no further decisions need

to be taken – and which hence are no decision topics but do need to be taken into ac-

count when evaluating (ranking) proposed alternatives – are constraints, such as budget

constraints, technological limitations, et cetera.

ARCHITECTURAL DESIGN DECISIONs are defined as those DECISIONS that are

assumed to influence the ARCHITECTURAL DESIGN and can be enforced upon this

ARCHITECTURAL DESIGN, possibly leading to new CONCERNs that result in a need

for taking subsequent decisions. This ‘decision loop’ captures the relations between

subsequent ARCHITECTURAL DESIGN DECISIONs. This loop also corresponds to the

‘divide and conquer’ technique of decision making, in which broadly scoped decisions

are taken which may result in finer grained concerns related to the broader concern.

Furthermore, it enables in theory traceability from concerns through decisions to arti-

facts, although this very much depends on whether those traces have been captured in
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Figure 4.7: Core model of architectural knowledge

the reflection of the architectural design. Note that architectural design decisions need

not necessarily be ‘invented’ by the architect himself; architectural patterns, styles, and

tactics are examples of architectural design decisions (or, more precisely, alternatives)

that are readily available from other sources. The ‘decision loop’ described above also

captures the rationale of an architectural design; the answer to the question why an

architectural design is the way it is. Rationale is in our opinion extremely interwoven

with all elements in this loop, and is therefore not represented as a distinct element in
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our model.

The ARCHITECTURAL DESIGN (often called ‘architecture’ for short) is the result

of all architectural design decisions. Note that reflection of (part of the) ARCHITEC-

TURAL DESIGN is not limited to a single ARTIFACT: a single ARCHITECTURAL DE-

SIGN DECISION might for instance be represented in the architecture description as

well as impact the source code. ARTIFACTs themselves can again be composed of

various (sub)ARTIFACTs, e.g., chapters in a document, or methods in a class. The

concepts ROLE and ACTIVITY are borrowed from SPEM, which defines the software

development process as “a collaboration between abstract active entities called process

roles that perform operations called activities on concrete, tangible entities called work

products” (OMG, 2005a). The ‘work product’ from SPEM resembles our notion of

ARTIFACT. The latter is in our opinion a better known and widely accepted concept in

Software Engineering.

4.5 Architectural Knowledge Use in Four

Industrial Settings

We initially started our research with the goal to characterize the use of architectural

knowledge in four industrial organizations. Although we were able to discover four dif-

ferent perspectives on architectural knowledge within those organizations (see §4.3.2),

the mismatches of our initial model of architectural knowledge with the observed prac-

tice in those organizations hampered a further diagnosis of the problems those organi-

zations encounter. Since those mismatches have been removed in our core model of

architectural knowledge, it is interesting to see how the organization-specific ‘models’

of architectural knowledge of all four organizations can be expressed in terms of the

core model. From a superficial look, each of the organizations appears to use archi-

tectural knowledge very differently. Alignment of the organization-specific models to

the core model, however, allows for a more fundamental characterization of how the

organizations perceive and use architectural knowledge.

The use of architectural knowledge in RFA and VCL is mainly located in the upper

‘description’ part of Fig. 4.7, i.e., the reflection of architectural design decisions in

artifacts. The use of architectural knowledge within DNV and PAV is positioned more

in the lower ‘decision’ part, i.e., the decision making process reflected in the decision

loop. We hypothesize that the problems that the organizations experience in managing

architectural knowledge are partially due to their focus on only a part of the theory of

architectural knowledge as expressed by our core model.

An overview of the result of the four characterizations is provided in Table 4.1. In
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Table 4.1: Diagnosis of industrial problems with architectural knowledge management
RFA VCL DNV PAV

Perspective Sharing Compliance Discovery Traceability

Main org. Design choices, Architectural rules Quality criteria, Knowledge entities

concepts Principles, Starting Quality in use

points, Prerequisites

Mainly used Arch. design decisions Arch. design decisions, Arch. design decisions, Concern, Decision topic

core concepts to enforce Concern, Arch. design, Alternative, Arch. design

to reflect decision

Problem Ambiguous terminology No sense of urgency Implicit relation between Lack of traceability

regarding compliance architecture and “quality” between knowledge

with architectural rules entities

Hypothesized Decision making process Tacit decision making ‘Quality’ and related arch. Implicit relations

cause not captured process knowledge not confined to between artifacts

a single artifact

Possible Explicit focus on Explicit focus on Uncover architectural Annotate architecture

solution relations between rationale of decisions design decisions, their documents with specific

decisions through through ‘decision loop’ cause, their effect on knowledge entities

iterative ‘decision loop’ elements the software product

this table we list for each of the organizations their prevalent perspective on the use of

architectural knowledge, the main architectural knowledge concepts encountered (both

organization-specific and at a core level), the hypothesized cause for the diagnosed

problems, and a possible solution to this problem. In the following subsections, we

further elaborate on these aspects for each organization in turn.

4.5.1 RFA: Development organization

RFA is a large development organization that develops and maintains software systems

for among others the public sector. These systems are typically critical for the public,

large in size and complexity, and long lasting. Because of the size of the organization

and the projects, this organization focuses on how to effectively share architectural

knowledge. To this end, RFA developed its own methodology and tooling to aid the

software architects in creating and documenting architectural knowledge by means of

architectural descriptions.

Architectural descriptions within RFA basically consist of a number of views based

on predefined viewpoints, and a set of specific architectural models such as an object

model, a functional data-model, etc. These models reflect a number of architectural

choices, which are based on decisions that relate to business objectives. The choices

take into account the design principles, starting points, and prerequisites to which the

architect needs to adhere to when designing the software architecture, as well as the

stakeholder concerns.

An example of a business objective documented in one particular architectural de-

scription is: “The data of the subsystems needs to be easily accessible”. A stated
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design principle based on this objective is “The system needs to be accessible using

web services as well as the Enterprise Service Bus” and the final architectural choice

made based on this principle is “The system information exchange uses InfoMessaging

and MS.NET Web Services”.

We interviewed architects and managers from RFA, who in these interviews ac-

knowledged that they are currently struggling with the different concepts, their rela-

tions and their more effective usage. This impairs effective sharing of architectural

knowledge, since architects are unsure which concepts to use to describe their archi-

tectural design. As a result, readers are unsure where in the architecture description

they can find the information they are looking for.

If we express the organization-specific terminology in terms of core concepts, an

interesting pattern emerges. The ‘different’ notions of business objectives, design prin-

ciples, and architectural choices all are in fact ARCHITECTURAL DESIGN DECISIONs,

which are somehow related to each other. However, the organization’s methodology

does not define very concrete guidelines to distinguish between those decisions. RFA’s

struggle with terminology might partially be blamed on the use of different terms for

the same architectural knowledge concept without a good definition of the discrimina-

tive features for these terms.

The explicit use of architectural knowledge within this organization can be primar-

ily found in the ‘description’ area of the core model: reflecting architectural decisions

in an architectural description. The decision making process – reflected in the decision

loop in the model – is left implicit by the organization’s methodology.

Our core model captures relations between different architectural design decisions

in the decision loop, where a certain architectural design decisions leads to a new con-

cerns that in turn leads to new decisions. A more explicit focus on this loop would

help defeat the ambiguity in terminology within RFA. A design principle could then

for instance be defined as a decision taken because of new concerns introduced by a

business objective. In the example above, the concern introduced by the business ob-

jective would be the need for accessibility. Architectural choices are related to design

principles analogously.

4.5.2 VCL: Consumer electronics

VCL is a large organization within the consumer electronics domain. This organization

has arranged software development along subsystems. A release of the software for

a consumer electronic product consists of integrating the relevant subsystems. Each

subsystem is developed by a small, dedicated development team. The teams are located

at multiple, geographically spread development sites.

This arrangement of the software and the software development activities demands
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guidelines to maintain the subsystem-based software architecture. To this end, a central

architecture team issues architectural rules: a set of principles and statements on the

software architecture that must be complied with throughout the organization.

Architectural rules originate from various issues that influence VCL’s software de-

velopment, such as defects identified in subsystem releases, change requests, or addi-

tional requirements. These issues need to be addressed in the software architecture.

Solutions to these issues – which affect all subsystems – are captured in text-based

documents. These documents are sent to all development teams as architectural rules

that need to be adhered to.

The creation of architectural rules can be expressed in terms of the core model.

The issues identified by the various stakeholders correspond to CONCERNs of STAKE-

HOLDERs. The architectural rules, i.e., the chosen solutions for these issues, are AR-

CHITECTURAL DESIGN DECISIONs that are ENFORCED upon the ARCHITECTURAL

DESIGN through dissemination of the ARTIFACTs in which they are reflected.

Although VCL is similar to RFA in that the focus of architectural knowledge use

is on the ‘description’ area of the core model, development in teams at distinct loca-

tions should put a particular emphasis on enforcement of architectural design decisions.

However, once the architectural rules have been disseminated to the individual develop-

ment teams, adherence to the rules on the subsystem architectures is the responsibility

of the teams themselves. In practice, some of the rules are disregarded by the teams.

Our core model suggests that one of the reasons for this might be the fact that only the

architectural design decisions themselves are being communicated, while the decision

making process itself remains tacit. This lack of insight into the reason of the archi-

tectural design decisions taken make that the development teams do not feel a sense of

urgency regarding compliance with these decisions. We believe that more information

about the rationale of the architectural rules, including the concerns that led up to the

decisions, increases this sense of urgency with the developers.

4.5.3 DNV: Quality audits

DNV is a company that performs independent software product audits for third parties.

A software product audit consists of comparison of quality criteria with the actual

software product. Most quality criteria assess the effects of architectural decisions

as reflected in the software product artifacts. A quality criterion might for instance

be “All access to data in a relational database should take place through dedicated

data access objects. No direct communication of business objects with the database is

allowed”.

The customer that acquires a software product expects this product to have a cer-

tain ‘quality in use’ (ISO/IEC 9126-1). Given the concern ‘quality in use’, there are

67



CHAPTER 4. A CORE MODEL OF ARCHITECTURAL KNOWLEDGE

various quality characteristics for which quality criteria must be selected. For instance,

the criterion that all data access must take place through data access objects favors the

maintainability of the software product over its efficiency. Selection of quality criteria

therefore depends on the relative importance of each of the quality characteristics in-

dicated by the customer. The example criterion will only be selected if maintainability

of the software product is indeed more important to the customer than efficiency.

The problem an auditor faces when performing a software product audit is that

architectural design decisions and the resulting architectural design are usually not re-

flected in a single artifact. Even if there is a document called ‘the architecture de-

scription’, architectural decisions impact other product artifacts (e.g., documentation

and source code) as well. There is no guarantee that the information in an architecture

description is complete, or even up-to-date.

The reflection of the effects of architectural decisions in different software product

artifacts can be readily identified in our core model. The LANGUAGE used to reflect

ARCHITECTURAL DESIGN in ARTIFACTs can be a natural language (e.g., English in

software product documentation), but also a programming language (source code) or

graphics (e.g., diagrams and figures in a software architecture description). A more

interesting and less apparent mapping is the mapping of ‘quality’ to the core model.

In terms of our core model, quality in use is a CONCERN of the customer, who is

a STAKEHOLDER. The quality characteristics and subcharacteristics are DECISION

TOPICs for which quality criteria are proposed and selected. The proposed criteria are

the ALTERNATIVEs. Selection of quality criteria is based on their impact on the quality

in use – the CONCERN– in terms of prioritized (sub)characteristics, as indicated above.

In this way, trade-off analyses are being made regarding conflicting criteria. The chosen

quality criteria describe the architecture in terms of how it ought to be. In other words,

quality criteria are a special type of ARCHITECTURAL DESIGN DECISIONs: decisions

that are expected to have influenced (rather than enforced upon) the ARCHITECTURAL

DESIGN.

In DNV the relation between architecture and quality is not obvious at first sight.

The core model helps us to describe quality in terms of architectural decisions and

their effect on the software product, and shows us that quality criteria that apply to

the architectural design are themselves architectural decisions. Using the core model,

we can express a software product audit as a comparison of two types of architectural

knowledge: architectural knowledge that is present in the software product, reflected in

the ARTIFACTs that make up the product, and architectural knowledge that is expected

by the customer, reflected in quality criteria. This makes it more apparent which ar-

chitectural knowledge is most important for a software product audit: the architectural

design decisions as well as their cause (e.g., stakeholder concerns and trade-offs) and

effect (e.g., constraints on subsequent decisions) should be discovered from multiple
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artifacts for an effective assessment of a software product’s quality.

4.5.4 PAV: Scientific research

PAV is a scientific organization that is involved in the development of large software-

intensive systems, used for scientific research. One of their projects is the development

of a highly distributed system that collects scientific data from around 15.000 sources,

distributed over 77 different stations, each source generating around 2 Gbps of raw data.

The challenge for this system is to communicate and process the resulting 30Tbps data

stream in real-time for interested scientists.

In this project, architectural decisions need to be shared and used over a time span

of more than 25 years. This is due to the long development time (more than 10 years),

and a required operational lifetime of at least 15 years. The organization is judged by

external reviewers on the quality of the architecture and the outcome of these reviews

influences the funding, and consequently the continuation, of their projects. Therefore,

it is of paramount importance to keep the system architecture at a high quality. In order

to achieve this purpose, PAV needs to evaluate at all times the design maturity, the

completeness, the correctness and the consistency of the architecture.

The evaluation of the architecture is to be performed at the level of knowledge en-

tities, which are units of architectural knowledge shared and communicated among the

project stakeholders. There are four different types of knowledge entities: problems

that state how specific functional requirements or quality attributes must be satisfied;

concerns that comprise any interest to the systems development, its operation or any

other aspect that is critical or otherwise important to one or more stakeholders; alterna-

tives that solve the described problem, potentially in different ways and with different

consequences; decisions that denote the selection of one among multiple alternatives.

During the architecting process, the architect takes a number of architectural de-

cisions that are gradually being refined into more low-level, technical decisions. The

lowest level of an architectural decision is called a specification, and the architecting

process finishes when all architectural decisions have been refined into specifications.

Knowledge entities can be expressed in artifacts that are documents in electronic or

printed format. The organization also considers artifacts of smaller granularity, called

artifact fragments, such as individual sections, paragraphs or pictures in a document,

in order to be able to trace fine-grained knowledge entities within a single document.

Finally, it is of high importance for the organization to keep trace of how the require-

ments, described in the requirements specification document are satisfied in the soft-

ware architecture document. Some requirements have associated risks.

We can express PAV’s organization-specific terminology in terms of our core model.

A problem is being solved by the alternatives, which coincides with the core model con-
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cept of a DECISION TOPIC. The knowledge entity on the other hand is a generalization

of four core model concepts, namely CONCERN, ALTERNATIVE, DECISION TOPIC

and DECISION. A specification is a special, refined case of a DECISION. An arti-

fact fragment is an ARTIFACT contained in other ARTIFACTs. Requirements and risks

are special types of CONCERNs that need to be taken care of in the decision making

process.

During our research in PAV we found that – although many of the core concepts

are present – most relations between artifacts remain implicit, potentially leading to

traceability issues. The mapping between the core model and the concepts specific to

this organization brings to the architect’s attention that four of the fundamental core

model concepts, namely CONCERNs, DECISION TOPICs, ALTERNATIVEs and DECI-

SIONs are in fact special cases of knowledge entities. With this in mind architects can

annotate architecture documents with higher level of detail by taking into account the

different types of knowledge entities. A more explicit focus on the core model’s ‘deci-

sion loop’, and in particular the individual elements that make up this loop, is likely to

result in better traceability.

4.6 Core Model Validation: Attempted Falsification

through Literature

The industrial experiences described in §4.5 showed a practical application of our core

model of architectural knowledge. In this section we determine the core model’s theo-

retical significance by comparing its concepts to architectural knowledge concepts used

in accepted software architecture literature.

As defined in §4.3.2 our core model is minimal in the sense that it is not possible to

express some concepts in any other concepts, and complete in the sense that there are no

concepts from other approaches that have no counterpart in the model. Unfortunately, it

is impossible to ‘prove’ that our model exhibits the desired features of being complete

and minimal. The best we can do is to search for counterexamples that prove our model

does not exhibit those features, thereby demonstrating that our model is not valid. If

we don’t succeed in this falsification attempt, we accept that as supporting evidence for

the validity of our model.

To properly apply the falsification approach on our core model, we have mapped on

our model the complete set of concepts from three different terminological frameworks

for architectural knowledge well-known from literature. Each of these frameworks has

a slightly different perspective on architectural knowledge: IEEE-1471 (IEEE 1471)

targets architectural descriptions, Kruchten’s ontology (Kruchten, 2004) focuses on
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Table 4.2: Falsification attempts on core model using software architecture literature

Core concept IEEE-1471 Kruchten’s ontology Tyree’s decision template

STAKEHOLDER Stakeholder

CONCERN Concern, Environment, Requirement, Defect, Assumption, Constraint,

Mission Risk, Plan Requirement

DECISION TOPIC scope Issue, Group

ALTERNATIVE Idea, Tentative Position

RANKING Argument

ARCHITECTURAL DESIGN Decision Assumption, Decision,

DECISION Principle

“DECISION LOOP” Rationale relationships Related decisions /

requirements / principles

ARCHITECTURAL DESIGN Architecture

LANGUAGE (Library) viewpoint

TO REFLECT (Library) viewpoint

ARTIFACT System, View, Model, Technical artifact Artifact

Architecture description

architectural design decisions per se, while Tyree and Akerman (2005) provide a tem-

plate to capture architectural design decisions – thereby relating architectural decisions

to architectural descriptions. Together, these perspectives cover all ‘corners’ of our

core model.

Our falsification attempts are summarized in Table 4.2, which shows the mapping

between core model concepts and the concepts of the three terminological frameworks

for architectural knowledge. The table shows that we failed to find any concepts that

do not fit our core model; we accept this result as support to the claim of validity of

our core model. In the following subsections the relationships between core model

concepts and concepts of each of the literature frameworks are elaborated upon.

4.6.1 Architectural descriptions: IEEE-1471

IEEE-1471 prescribes the use of so-called views to describe an architecture. Views

are reflections of part of the architectural design according to a particular perspective,

or viewpoint. A viewpoint defines “the language, modeling techniques, or analytical

methods to be used in constructing a view based upon the viewpoint” (IEEE 1471).

In other words, a viewpoint defines the LANGUAGEs to use as well as how to reflect

the architectural design in a view. The IEEE-1471 terms model and view are both

subsumed in the core model concept ARTIFACT.

A library viewpoint is a viewpoint that is defined elsewhere, i.e., a specialized in-

stance of a normal viewpoint. The core model captures the rationale of an architec-

tural design decision in the trajectory from CONCERN and DECISION TOPIC through
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RANKING of ALTERNATIVEs to the eventual CHOICE of the DECISION.

In IEEE-1471 terms, a system has an architecture, reflected in the core model as

an ARCHITECTURAL DESIGN that is reflected in a set of ARTIFACTs, which together

correspond to the IEEE system. The architectural description is a particular ARTIFACT

that conforms to the IEEE prescription of how the ARCHITECTURAL DESIGN should

be reflected, i.e., using a viewpoint as LANGUAGE. The environment in which a sys-

tem operates determines the setting and circumstances of developmental, operational,

political, and other influences upon that system. These influences are represented by

CONCERNs in the core, as described in §4.4.

Finally, a mission is defined as ‘a use or operation for which a system is intended

by one or more stakeholders to meet some set of objectives’. This is a special case of a

CONCERN, i.e., ‘an interest which pertains to the system’s development, its operation

or any other aspects that are critical or otherwise important to one or more stakehold-

ers’.

4.6.2 Documenting design decisions

Tyree and Akerman (2005) consider important decisions as the major forces that drive

architecture. They present a template that can be used to document design decisions.

According to this template, assumptions and constraints limit the alternatives that can

be selected. Assumptions are DECISIONs that are assumed to have been taken and

to influence the ARCHITECTURAL DESIGN, often resulting in new CONCERNs for

STAKEHOLDERs. Constraints are posed by decisions already taken, reflected in new

CONCERNs. These new CONCERNs are to be taken into account when ranking AL-

TERNATIVEs for a DECISION TOPIC.

During the architecting process, an architect comes up with positions for a certain

issue. Ultimately, one of the positions is chosen based on some argument. This position

becomes the decision. This sequence of steps is also visible in our core model, as the

proposal of a set of ALTERNATIVEs, out of which one ALTERNATIVE is chosen as

DECISION.

A group can be used to organize a set of decisions based on their topic (e.g., inte-

gration, presentation, etc.). In our core model, DECISION TOPICs (i.e., concrete sub-

jects for which a solution is proposed) correspond to the group concept of Tyree and

Akerman (2005). Their template lists the positions (i.e., ALTERNATIVEs) ‘Rearchitect

existing batch logic in System A’, ‘Extend System B to handle a new product type’, and

‘Develop a replacement for System A’ for the issue ‘Current IT infrastructure doesn’t

support interactive approval functionality for most financial products’, with a group-

ing labeled ‘System structuring’. The example template clearly shows the proposed

positions all target the group (i.e., DECISION TOPIC) ‘System structuring’.
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According to Tyree and Akerman, a decision states the architecture’s direction.

This corresponds to our notion of an ARCHITECTURAL DESIGN DECISION that is

enforced upon the ARCHITECTURAL DESIGN. The template has room for the doc-

umentation of related decisions, related requirements, related artifacts, and related

principles. The way in which DECISIONs (that include principles), ARTIFACTs, and

CONCERNs (i.e., requirements) can be related has been extensively described in §4.6.3.

4.6.3 Ontology of architectural design decisions

Kruchten (2004) defines an ontology of architectural design decisions. He argues that

‘design decisions deserve to be first class entities in the process of developing complex

software-intensive systems’ and proposes a model to do so.

Decision kinds The ontology defines three classes of architectural design decisions:

existence decisions (‘ontocrises’), property decisions (‘diacrises’) and executive de-

cisions (‘pericrises’). In terms of our core model, these design decision classes are

extensions of the core concept ARCHITECTURAL DESIGN DECISION.

Decision attributes Kruchten defines a number of attributes of architectural design

decisions, all of which can be mapped to concepts in our core model. The epitome is the

ARCHITECTURAL DESIGN DECISION itself, summarized in a short textual statement

(e.g., ‘Use Java’). Rationale is the justification of a decision, captured in the core

model by the trajectory from CONCERN and DECISION TOPIC through RANKING of

ALTERNATIVEs to the eventual CHOICE of the DECISION. The category of a decision

can be mapped on the DECISION TOPIC concept. In our core model, CONCERNs

consist of one or more DECISION TOPICs for which a DECISION must be taken. These

DECISION TOPICs are concrete subjects for which a solution is proposed. As indicated

by Kruchten’s remark, categories are “useful for exploring sets of design decisions that

are associated to a specific concern or quality attribute”. The author of a decision

corresponds to the STAKEHOLDER that took the decision. A timestamp is an intrinsic

property of any action, including the actions represented by ellipses in Fig. 4.7. The

scope of a decision is an intrinsic property as well, which affects the enforcement of

the decision. Examples of scope listed by Kruchten include time scope (“Until the first

customer release. . . ”) and organization scope (“The Japanese team. . . ”). The cost and

risks associated with a decision are both forms of STAKEHOLDER CONCERNs.

Decision evolution The evolution of design decisions is captured in the state at-

tribute. In the early decision making phase, for instance, Ideas and Tentative decisions
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(i.e., decisions with a state ‘idea’ or ‘tentative’) correspond to the core concept of an

ALTERNATIVE. Both are not yet decisions, and might never become one. Tentative

decisions can be used in running ‘what if’ scenarios, i.e., a ranking of different ideas.

An architectural design decision that is decided is represented as an ARCHITEC-

TURAL DESIGN DECISION in our core model. If a decision is approved, this means it

is enforced upon the ARCHITECTURAL DESIGN. The three remaining states have to

do with ‘canceling’ earlier taken design decisions. Our core model, however, exhibits

the notion of an ever-growing ‘decision pool’ that may or may not influence the ar-

chitectural design. Rendering a decision challenged consists of taking a new decision

that a previously taken architectural design decision should no longer influence the ar-

chitectural design. ENFORCEMENT of such a decision upon the architectural design

results in a change of the architectural design, thereby removing the influence of the

earlier taken decision and effectively rejecting the earlier decision. Finally, obsolesced

is similar to the rejected state, but without an explicit rejection of a decision. In other

words, the decision is conceptually still in place, but – e.g., through evolution of the

design – its influence on the architectural design has worn off. The history of a decision

consists of all the ‘state changes’ that apply to that decision, including the introduction

of new decisions to challenge or reject earlier decisions.

Relations The ontology further defines a number of relations between decisions. All

these relationships are manifested in the ‘decision loop’ in the core model. Kruchten’s

notion of alternative design decisions that address the same issue (i.e., the relation is an

alternative to) maps directly to the core concept of different proposed ALTERNATIVEs

for a single DECISION TOPIC.

The relation ‘decision A constrains decision B’ implies that B is tied to A and must

be in the same state as A. For instance, ‘Must use J2EE’ constrains ‘use JBoss as Appli-

cation Server’. In terms of the core model, the DECISION ‘Must use J2EE’ introduces a

new DECISION TOPIC ‘which application server to use?’. The ALTERNATIVE ‘JBoss’

could not have been chosen without the decision to use J2EE.

The relationship bound to is defined in terms of the constrains relation. Decisions

A and B are bound to each other when A constrains B and B constrains A. This rela-

tionship cannot be expressed in our core model: it translates to a sequence in which

Decision A taken for Decision Topic DTA introduces a new DECISION TOPIC DTB

for which DECISION B is taken, which in turn introduces again the need to decide on

DTA. Unfortunately, Kruchten does not provide an example for this relation, but in our

opinion it relates to a kind of ‘atomicity’ that would be expressed as a single decision

in the core model.

The relation A enables B is a weaker form of constrains, since decision A does not
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introduce the decision topic DTB for which B is taken. Instead, DECISION A leads to

a CONCERN that is taken into account when ranking ALTERNATIVEs and subsequently

taking decision B. Although A is not a necessary prerequisite for B, once A has been

explicitly taken the alternative that becomes decision B will rank higher. An example

of this relation is from the decisions ‘Use Java’ to ‘Use J2EE’.

In the relation ‘decision A forbids decision B’, decision A also leads to a Concern

that is used in ranking of alternatives when taking decision B. The difference with

‘enables’ is that the chosen alternative for decision B is now has a negative impact on

the ranking of Alternative B, i.e., B will never become a Decision.

The relation A comprises B is a stronger relation than constrains, in the sense that it

does not only affect new Decision Topics introduced because of Decision A, but other

Decision Topics as well. These Decision Topics were already present (or would be

introduced) because of other Concerns. In a constrains relation, the affected Decision

Topics would not be present without Decision A. An example of this relation is the

decision ‘use middleware framework M’ that introduces a new concern C ‘can only

use services from M’. When in the ranking of proposed alternatives for the Decision

Topic ‘how to handle message passing’ concern C is taken into account, the only viable

alternative is ‘Message passing must use messaging services from M’. Moreover, this

alternative could not have been chosen without Decision A (i.e., the use of framework

M). This is the main difference with the enables relation. In a comprises relation,

decisions for multiple decision topics DTB1
, DTB2

, . . .DTBn
can be traced back to a

single concern resulting from Decision A.

Explicitly ignoring concern C in ranking alternatives for DTBi
introduces an ex-

ception to Decision A, denoted by the relation ‘Decision Bi overrides Decision A’.

When a concern that results from an earlier decision A has – by accident – not been

used in the ranking of alternatives for decision B, a conflict between decisions A and

B may arise. Note that the relations ‘B overrides A’ and ‘B conflicts with A’ are both

mapped in the same way to the same concepts in the core model. The only difference

between the two relations is the reason a Concern is not used in the ranking: on purpose

in ‘overrides’ vs. accidental in ‘conflicts with’.

When decision A subsumes decision B, decision A is is more encompassing than

decision B. An example of this relation is described by the following sequence. The

decision ‘must code the system’ results in a Concern ‘which language to use to code

the system’ which can result in either the decision ‘must code the system in Java’ or the

decision ‘must determine in which language to code the subsystems’. In the latter case,

new decision topics are introduced for ‘which language to use to code subsystem ‘X”

for each subsystem. In the former case, these decision topics are not introduced but

subsumed in the more general Decision Topic ‘which language to use to code the sys-

tem’. The decision ‘code the system in Java’ therefore subsumes each of the decisions
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‘code subsystem ‘X’ in Java’. Kruchten describes how a decision B (code subsystem

‘X’ in Java) can later be generalized into decision A (code system in Java), obsolescing

decision B (see states described above). Immediately taking Decision A ‘prevents’ the

introduction of the new Decision Topics for subsystems X, Y, and Z.

Besides relations between decisions, Kruchten names several relations with ‘exter-

nal artifacts’. Design decisions trace from technical artifacts upstream: requirements

and defects (i.e., CONCERNs in the core model), and trace to technical artifacts down-

stream: design and implementation artifacts (i.e., ARTIFACTs in the core model). They

are also traceable to management artifacts, such as risks and plans (again CONCERNs).

Finally, Kruchten notes that it may be useful to track which portions of the system are

not compliant with some design decisions. In the core model, this non-compliance cor-

responds to a reflection in ARTIFACTs of an ARCHITECTURAL DESIGN upon which

some ARCHITECTURAL DESIGN DECISIONs have not yet been enforced.

4.7 Core Model Applications

Besides providing a common frame of reference that allows discussions about architec-

tural knowledge concepts (such as the ongoing discussion in this thesis), the core model

can also be applied to exchange architectural knowledge. Two types of exchange come

to mind: one internal to organizations (intra-organizational exchange), and one external

(inter-organizational exchange).

4.7.1 Intra-organizational knowledge exchange:
Project memories

Over the past decade, the notion of learning software organizations, i.e., organizations

that improve and extend their software engineering knowledge through continuous

learning and exchange of experience has gained considerable interest. Such learning

needs can be addressed by systematic application of organizational learning principles

(Dingsøyr et al., 2006), supported by organizational (project) memories (Althoff et al.,

2000).

Project memories can support various software engineering activities, such as ver-

sion control, change management, documentation of architectures and design decisions

(Moran and Carroll, 1996), and requirements traceability (Ramesh and Jarke, 2001).

Learning from and improvement of the software development process can be supported

by predictive models that guide decision making based on past projects (e.g., (Rus and

Lindvall, 2002; Ruhe, 2002).) Such decision guidance also needs the knowledge incor-

porated in a project memory.
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In general, different types of knowledge should be present in a project memory:

know-how, know-why and know-what (Ruhe and Bomarius, 1999). Existing nota-

tional and documentation approaches to software architecture typically focus on the

components and connectors. These approaches fail to document the design decisions

embodied in the architecture as well as the rationale underlying the design decisions.

This means that often the architectural knowledge present in a software engineering

project memory adequately covers know-what and know-how, but fails to address the

know-why of a software architecture.

Failure of addressing know-why results in high maintenance costs, high degrees

of design erosion, and lack of information and documentation of relevant architectural

knowledge. The know-why - or rationale - of an architecture manifests itself through

the design decisions that are incorporated in the architecture.

The core model of architectural knowledge captures the interdependencies between

architectural design decisions, architectural descriptions and the various stakeholders

of the system, and treats design decisions as first-class entities. This ensures that not

only the software artifacts themselves are subject to an organization’s knowledge man-

agement efforts, but also the technical, organizational, political and economic influ-

ences on these artifacts. Based on the core model, a network of design decisions can

be instantiated. Combined with the associated design artifacts, this network could then

serve as a project memory containing vital architectural knowledge, including the now

oft-lacking architectural know-why.

4.7.2 Inter-organizational knowledge exchange:
An architectural knowledge grid

In an inter-organizational setting, we can look at the core model from two perspectives,

namely data integration and service integration. For data integration the core model

becomes a reference model for exchanging architectural knowledge. For service inte-

gration, it provides the means to integrate the services that a grid infrastructure may

provide.

Having a core model of architectural knowledge has a number of advantages. First

of all, from a data integration perspective, the core model defines a vocabulary for

architectural knowledge: the minimal set of common notions that is needed when ar-

chitectural knowledge has to be made explicit. Terminology, processes, and concerns

particular to a specific organization or domain can be expressed in terms of core model

concepts. Metaphorically speaking, the organization-specific terminology lies like a

shell around the core model. One can even envision multiple layers of shells, for in-

stance when an organization defines its own methodology (the outer shell) as an ex-

tension to the IEEE-1471 standard (the inner shell). Thanks to this separation between
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core model and shells, we gain in terminological stability (the core model acts as a

reference model used by all companies), extensibility (the architectural knowledge of

new companies or domains can always be added as a new shell without any increase in

complexity), and reuse (by adding new shells, the architectural knowledge vocabulary

is incrementally enriched).

Moreover, with a shared core model it becomes easier to agree on a common termi-

nology. This common terminology sticks to the essence and neglects the specific con-

cepts delegated to the shells. These benefits are reaped whenever multiple departments

in the same organization, or even different partner organizations, have to collaborate in

the same software project: terminological misunderstandings are avoided.

Furthermore, from a service integration perspective the core model can be the

means to integrate the services that a grid infrastructure may provide. These services

may ‘speak the same language’ by exchanging data expressed in concepts from the

core model. A direct benefit of this language uniformity is that the core model, being

shared among multiple sites, realizes a more generic architectural style aimed at inte-

gration via an enterprise data model (Gorton, 2006): the enterprise data model (i.e.,

our core model) is the target format for all messages between the grid members, which

transform their specific formats to the target format. Such transformations are defined

as shells.

We envision architectural knowledge exchange in a grid-setting (Lago et al., to ap-

pear), an instantiation of the knowledge grid discussed in (Zhuge, 2004). The basic

idea is sketched in Fig. 4.8. The model depicted in the center is the core model of

architectural knowledge. Organization-specific models provide a specialization hereof.

In the figure, design principles (a kind of ARCHITECTURAL DESIGN DECISION) are

made available by RFA, while quality criteria (another kind of ARCHITECTURAL DE-

SIGN DECISION) are made available by DNV (see also §4.5). Both organizations may

offer visualization services (e.g., tabular versus graph-based) to visualize ARCHITEC-

TURAL DESIGN DECISIONs. Suppose a third organization, X, is looking for ARCHI-

TECTURAL DESIGN DECISIONs that are shared on the grid. Because of the special-

izations of the notion of an ARCHITECTURAL DESIGN DECISION at RFA and DNV,

this query translates into a search for design principles at RFA, and quality criteria at

DNV. Both results will be returned, even using the local visualization services of RFA

and DNV.

4.8 Conclusions

In this chapter we have presented a model of architectural knowledge. This model is

the result of the execution of an action research cycle. Experimentation with an earlier
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Figure 4.8: Architectural knowledge exchange in a grid-setting

version of the model identified mismatches between the model and industrial practice.

Those mismatches have been overcome by ensuring the new version of our model of

architectural knowledge is both complete and minimalistic. Because of the minimal-

istic aspect of the model, we refer to it as a ‘core model’ of architectural knowledge.

The validity of the claim of completeness of our core model is made plausible by an

attempt to falsify this validity using various sources from literature.

Application of the FRS method results in a model that captures both static and dy-

namic aspects. By capturing dynamic aspects of a domain, the resulting model not

only focuses on what exists in a domain (e.g., design decisions, architectural descrip-

tions), but also on how things happen (e.g., the decision making process). This allows

us to model the architecting process as a whole, including dynamic relations between

otherwise static objects.

Hofmeister et al. (2007) define architecting as an iterative process in which the
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architecture ‘grows’ over time as architects perform architectural activities, such as

analysis, synthesis, and evaluation. In the core model we build further on this view, by

considering the iterative nature of architecting as a ‘decision loop’. We focus not only

on the design decisions themselves, but also on the result of this iterative process – the

architectural design – which is reflected in various design artifacts such as architectural

descriptions.

The application of the core model to characterize the use of architectural knowl-

edge in four industrial organizations brought the organizations tangible benefits: RFA

moved a step further in improving its corporate terminology. By making explicit the

missing link between the architectural design decisions (or rules) and the rationale

behind their enforcement, VCL can improve compliance with corporate architectural

rules. DNV can codify the knowledge about what is present in a software product and

what is expected to be present, hence providing a better support for software project

audits. PAV can now support its architects in annotating its documents with architec-

tural knowledge in a more efficient way, thereby facilitating safeguarding the quality

of the architecture.
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Conclusions

In this part we have explored the domain of architectural knowledge management. Us-

ing both desk research and field research we answered three research questions, intro-

duced in §2.2. In this part, we have established an understanding of what architectural

knowledge is, how it can be managed, and what related challenges exist in (industrial)

practice. In §5.1 we elaborate upon our contributions by revisiting and answering

our three research questions. In §5.2, we discuss several challenges that need further

investigation. Two of these challenges will be addressed in Parts II and III.

5.1 Contributions

5.1.1 What is architectural knowledge? (RQ-I.1)

Our research provides a dual answer to the question what architectural knowledge is.

On the one hand, we investigated what the current view on architectural knowledge in

literature is (Chapter 3); on the other hand, we have provided our own reference model

of architectural knowledge (Chapter 4).

Our investigation of existing literature has shown that there is no single view on

architectural knowledge, but that instead there are four prime ways in which one can

look at architectural knowledge: the pattern-centric view, the dynamism-centric view,

the requirements-centric view, and the decision-centric view. In all views, we can

distinguish between tacit and explicit architectural knowledge, as well as between

application-specific and application-generic architectural knowledge. Moreover, all

views on architectural knowledge can be linked to the concept of architectural design

decisions; constructing an architectural design is essentially a decision making process.

Architectural design decisions play a pivotal role in our own model of architectural

knowledge, in the form of the ‘decision loop’. In this model, (architectural) decision
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making is viewed as proposing, ranking, and selecting alternative solutions to address

stakeholder concerns. Each chosen alternative, i.e., architectural design decision, may

introduce new concerns and hence lead to subsequent architectural design decisions.

A key property of our ‘core model’ of architectural knowledge is that other models

can be expressed in terms of core model concepts. Hence, the core model can be used

as a common frame of reference in discussions on and management of architectural

knowledge.

5.1.2 How can architectural knowledge be managed?
(RQ-I.2)

The question how architectural knowledge can be managed is answered in Chapter 3

through a combination of literature review and an investigation of the state of the prac-

tice in industry.

Our systematic review led to the recognition of different views on architectural

knowledge, and the definition of four architectural knowledge categories. Each of

the views on architectural knowledge has a corresponding philosophy on how such

knowledge should be managed. These philosophies can be expressed as knowledge

conversions between the different categories.

While many single-philosophy approaches to architectural knowledge management

exist, a shift to more overarching approaches can be observed. It seems that a fifth,

‘decisions-in-the-large’ philosophy is emerging. In this philosophy, architectural knowl-

edge is related to the whole architecting process, and not to either the problem do-

main, or the solution domain, nor to decisions per se (‘decisions-in-the-narrow’). The

decisions-in-the-large philosophy appears to be driven by the question how and when

architectural knowledge can be used, e.g., for architecting, sharing, assessing, or learn-

ing.

Strategies to manage architectural knowledge can be broadly classified in ‘person-

alization’ and ‘codification’. While many state-of-the-art approaches follow the cod-

ification strategy, industrial practice implicitly relies on personalization. The person-

alization strategy is hardly ever intentionally chosen. Codification has the potential to

contribute to better management of architectural knowledge, given that important so-

cial aspects are taken into account to get such systems into use. However, there are

good reasons for many organizations to opt for a personalization approach in order

to facilitate innovative solutions with minimal bureaucracy. A hybrid strategy, which

combines codification and personalization probably suits typical architecting activities

best.
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5.1.3 What are typical challenges to architectural knowledge
management in practice? (RQ-I.3)

We answered the question what typical architectural knowledge management chal-

lenges are in Chapter 4. Those challenges were identified by characterizing the use of

architectural knowledge in four industrial organizations. We identified four high-level

challenges regarding architectural knowledge management in these four organizations:

∙ Architectural knowledge sharing is the challenge to improve the way architec-

tural knowledge is shared within and between organizations;

∙ Architectural knowledge discovery is the challenge to enhance the discover-

ability of relevant architectural knowledge;

∙ Architectural knowledge compliance is the challenge to support alignment to

common architectural rules;

∙ Architectural knowledge traceability is the challenge to enable effective navi-

gation through an organization’s body of architectural knowledge.

5.2 Discussion

The answers to the research questions lead to follow-up questions, some of which will

be answered in this thesis and some of which warrant future research.

Regarding the appropriate choice of knowledge management strategy, we believe

two phases of architecting should be distinguished: a creative first phase, and a ratio-

nal second phase. The first phase is mostly related to the production of architectural

knowledge, while the second phase targets architectural knowledge consumption.

In the first phase, the decision making process is a rather unstructured process in

which the architectural solution space is explored and ideas are coined. While it could

already very much benefit from codified knowledge (such as architectural styles, pat-

terns, and tactics), this creative architecting phase seems to be particularly suited for

a personalization strategy. Although it is important that architectural knowledge such

as expertise, options under consideration, and the like can be located when needed,

this need not necessarily be through structured knowledge repositories. In this phase,

meetings between architects (and other stakeholders) and ad-hoc communication by

means of for instance email discussions are little intrusive and pose no limitations on

the options that can be considered. Architects might feel such limitations when forced

to codify each and every option they consider.
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In the second phase, the design space is outlined by approved architectural deci-

sions, and a stable architectural design emerges. This phase lends itself for a ratio-

nalization of the earlier ‘unstructured’ decision making process. Traces from the first

phase, present in for instance emails, discussion fora, and meeting minutes, can be used

to ‘reconstruct’ the rationale for the current architectural design. In this phase, the ra-

tionalized decision making process can be codified by making explicit for instance the

architectural decisions taken and other options considered (and rejected). This codified

knowledge can then easily be consulted throughout the remainder of the development

project – and possibly even be reused in similar future projects.

In the remainder of this thesis, we examine architectural knowledge management

from the perspective of architects and auditors. Whereas architects can be seen as

principal producers of architectural knowledge, auditors can be regarded as principal

architectural knowledge consumers. Although this distinction is not clear-cut, and both

parties may act as producers and consumers, the difference in focal points leads to

different needs in architectural knowledge management.

Two of the challenges from §5.1.3 are directly related to the remainder of this thesis.

Architects need to exchange the architectural knowledge they produce, hence architec-

tural knowledge sharing is a primary challenge for architects. This will be the subject

of Part II. Auditors need to find the architectural knowledge produced by others, hence

architectural knowledge discovery is a primary challenge for auditors. This will be the

subject of Part III. The other two challenges are outside the scope of this thesis, and

have been addressed by other researchers of the GRIFFIN project.
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6
Sharing Architectural Knowledge

The architecting process is very knowledge-intensive in nature and it is crucial to

effectively support architects with sharing architectural knowledge. This introduction

chapter of Part II briefly outlines the problems and challenges related to sharing ar-

chitectural knowledge and introduces our research contributions in this area. To this

end, it lists the central research questions, elaborates upon the research methodology

followed, and introduces the studies presented in Part II.

6.1 Introduction

Software architects are knowledge workers. They are the central stakeholder in the ar-

chitecture process, and responsible for making the key architectural decisions, commu-

nicating with both business and technical stakeholders, and safeguarding the project’s

success. Based on sound judgment, they are expected to constantly balance organiza-

tional requirements, technical requirements, and constraints while taking and commu-

nicating the architectural design decisions for the architecture design problems at hand.

Supporting architects in these knowledge-intensive tasks calls for effective support for

sharing architectural knowledge.

In research and practice there is a broad consensus on the importance of sharing ar-

chitectural knowledge, in particular for reusing best practices, obtaining a more trans-

parent decision making process, providing traceability between design artifacts, and

recalling past decisions and their rationale. The obvious advancements in this archi-

tectural knowledge community notwithstanding, some scoping and maturation would

be beneficial to both practitioners and researchers. This ensures that the methods, tools

and techniques developed actually help in solving real-world problems.
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The research in this part is based on case study research at RFA, one of the in-

dustrial partners of the GRIFFIN research. In Part I we explained that application of

our core model of architectural knowledge (see Chapter 4) highlighted that the primary

challenge for RFA related to architectural knowledge sharing. In this part we further

zoom in on this challenge. By conducting several case studies at RFA, we iteratively

built up understanding on how to effectively support architects in sharing architectural

knowledge. We thereby took a broader perspective on knowledge sharing than the in-

ter and intra-organizational knowledge exchange through models that is discussed in

Chapter 4; we looked at person-to-person knowledge sharing and related schemes as

well.

The remainder of this chapter is organized as follows. In §6.2 we explain the mo-

tivation for this research by arguing why sharing architectural knowledge is important.

In §6.3 we formulate our research questions. In §6.4 we elaborate upon the research

methodology followed, followed by an overview of research methods used in §6.5. In

§6.6 we provide an overview of the chapters in this part and their relation to the re-

search questions from §6.3. In §6.7, finally, we list the prior publications upon which

this part has been based.

6.2 Problem Statement

Rus and Lindvall (2002) stated that “the major problem with intellectual capital is that

it has legs and walks home every day”. This statements holds as well for software

architecting. Architects often work on a project-basis, and often reside at the cus-

tomer organization instead of at the internal architecture department. When a project

is finished they usually quickly move on to the next. Consequently, there is little time

to meet and discuss with colleague architects who work elsewhere, let alone to share

useful architectural knowledge with them.

Sharing architectural knowledge benefits architects in many ways, the most impor-

tant being the prevention of knowledge vaporization. Knowledge pertaining to software

architectures that is not explicitly stored eventually vaporizes (Bosch, 2004). The soft-

ware system then turns into a ‘black box’, resulting in high maintenance cost and high

degrees of design erosion. Knowledge vaporization also leads to additional costs made

each time knowledge has to be transferred within the organization. Architects have to

rethink the reasons why certain decisions have been made, or why errors occurred, and

they have to repeatedly follow the same paths to achieve similar results.

Explicit knowledge can be shared more easily between different stakeholders. This

brings us to three additional reasons for sharing architectural knowledge:
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∙ To foster reuse. Every project is different and almost no architecture is the same.

Nonetheless, in many cases certain best practices such as architectural styles, tac-

tics or patterns apply to categories of applications or to specific domains. Shar-

ing experience with colleagues or other stakeholders is thus something architects

should do to reuse important architectural knowledge assets. This not only pre-

vents architects to ‘reinvent the wheel’, it also improves the overall expertise

of architects in the organization, and may even help to create a community of

architects who can contact each other to exchange ideas, solutions, and other

experience.

∙ To promote learning and training. If architectural knowledge is better acces-

sible to or more effectively delivered to people, this information could be put to

good use, such as learning and training. Especially junior architects who arrive

fresh in an organization benefit from this. Instead of digging through endless file

shares and feeling lost in their new surroundings, effective sharing mechanisms

can give them fast access to important information sources (artifacts or people).

∙ To increase collaboration. In a decade where trends such as globalization, off-

shoring, virtual organizations and collaboration within closed and open commu-

nities emerge, sharing knowledge on software architectures is becoming increas-

ingly important. Stakeholders are often located at different places, which makes

exchanging knowledge face-to-face hard. Nevertheless, to stay up-to-date, share

expertise, and exchange ideas, they have specific knowledge needs. Especially

current large-scale software development and the complex architectural prob-

lems related to this calls for collaboration of multiple architects, developers, etc.

RFA is a large software development organization in which many architects are

involved in architecting activities. For this organization, sharing relevant architectural

knowledge is crucial for the reasons described above. RFA’s primary goal is to develop

high-quality software systems, and managers in this organization acknowledge the need

for efficient collaboration between stakeholders and maintaining and increasing the

know-how of architects by learning, training, and knowledge reuse.

Although there was a clear need for effective sharing of architectural knowledge,

at the start of the GRIFFIN project we quickly discovered that the status quo at RFA

was not really close to meeting this goal. Significant issues with respect to sharing

architectural knowledge were brought to light. A tool for reusing architectural best

practices was seldom used, architects seemed to know little of each other’s interest,

expertise or experience, and a structured approach for knowledge management in the

architecting process did not exist. As a result, architects of RFA often ‘reinvented the

wheel’ instead of resorting to the body of knowledge available.
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Overcoming the above issues marked the starting point for a number of consecutive

studies conducted at RFA that form the core of Part II of this thesis. The overall goal

of these studies was understanding how to effectively support architects in sharing

architectural knowledge.

van den Hooff and Huysman (2009) stress the need for sharing knowledge and dis-

cuss two main approaches to managing knowledge sharing: an emergent approach fo-

cusing on the social dynamics between organizational members and the nature of their

daily tasks, and an engineering approach focusing on managing interventions to facil-

itate knowledge transfer. The emergent approach, the prevalent approach to modern-

day knowledge management literature, emphasizes that knowledge sharing cannot be

forced because it results from an intrinsic motivation that is personally, subjective and

socially determined. The engineering approach, however, has its value as well, because

it – although not directly – seems to stimulate and create conditions for this emergent

process (van den Hooff and Huysman, 2009). Our contribution is in line with the en-

gineering approach; by focusing on engineering useful and appealing methods, tools

and technologies, we aim to (intrinsically) motivate architects to share architectural

knowledge more frequently and more effectively.

6.3 Research Questions

Corresponding to the problem statement outlined in the previous section, our main

research question is:

RQ- II.1 How to effectively support architects in sharing architectural knowledge?

An introduction to the concept of architectural knowledge is presented in Part I in

which we have discussed what architectural knowledge is (RQ-I.1). In this part we fo-

cus on how architects can be effectively supported to share such knowledge. To answer

this question properly we need to grasp what kind of knowledge-intensive activities ar-

chitects are involved in and what kind of knowledge sharing support they need during

these activities. This leads to the following two research questions, as also depicted by

the arrows in Fig. 6.1.

RQ- II.2 What do architects do that involves architectural knowledge sharing?

RQ- II.3 What do architects need with respect to architectural knowledge sharing?

In order to fully understand what the main activities of architects are (RQ-II.2), we

need to take into account the context in which they operate. This context is often rela-

tively ‘constant’, and hard to change. Therefore, before we can propose any solutions
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RQ- II.1: How to effectively 

support architects in sharing 

architectural knowledge?

RQ- II.2: What do architects 

do that involves architectural 

knowledge sharing?

RQ- II.3: What do architects 

need with respect to architectural 

knowledge sharing?

RQ- II.4: What organizational challenges 

exist to sharing architectural knowledge?

RQ- II.7: What do architects consider the desired 

approach to sharing architectural knowledge?

RQ- II.5: What are prerequisites for 

successful sharing of architectural knowledge?

RQ- II.6: What are desired properties of 

architectural knowledge sharing support?

Figure 6.1: Research questions of Part II

to effectively share architectural knowledge, it is important to sketch the boundaries in

which we have to operate. Identifying these boundaries involves understanding organi-

zational challenges related to sharing architectural knowledge. Based on these insights

we aim to discover what organizational or technical prerequisites exist for successful

sharing of architectural knowledge. We derive two research questions from RQ-II.2:

RQ- II.4 What organizational challenges exist to sharing architectural knowledge?

RQ- II.5 What are prerequisites for successful sharing of architectural knowledge?

Based on our understanding of what architects do and what challenges exist to

sharing architectural knowledge, we focus on what we could do to make their life a bit

easier in this respect (RQ-II.3). To fully understand what kind of (tool) support archi-

tects need we start with identifying desired properties such support should have. Based

on a more elaborate investigation in practice we also elicit what architects consider the

desired approach to architectural knowledge sharing. This prevents us from designing

a solution that does not match the expectations of practicing architects. From RQ-II.3

we thus derive the following two research questions:

RQ- II.6 What are desired properties of architectural knowledge sharing support?

RQ- II.7 What do architects consider the desired approach to sharing architectural

knowledge?

Summarizing the above, the answer to our main research question (RQ-II.1) is

found by unifying the answers to a number of derived research questions central to

this part (RQ-II.2 - RQ-II.7). The relations between these research questions are also

illustrated in Fig. 6.1.
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6.4 Research Methodology

This research was conducted mainly at RFA, one of the industrial partners of the

GRIFFIN consortium. As discussed in §6.2 RFA’s main problem was that sharing

architectural knowledge was implemented quite ineffective and in an ad hoc matter.

Between 2005 and 2009, we have worked together with architects of RFA to further

analyze the status quo with respect to architectural knowledge sharing. During a num-

ber of studies we proposed, implemented and evaluated several improvements.

Our qualitative research over the past four years closely resembles a typical action

research cycle. Action research is “grounded in practical action, aimed at solving an

immediate problem situation while carefully informing theory” (Baskerville, 1999). A

particular strength of the qualitative nature of action research is its value in explaining

what goes on in organizations (Avison et al., 1999), which is exactly what we needed

to do in RFA.

In its most simple form action research consists of a diagnostic and a therapeutic

stage, but a more widely practiced and reported form is called canonical action research

(CAR), which is based on a five stage cyclic model presented by Susman and Evered

(1978). This model consists of five main stages:

1. Diagnosing. Identification of primary problems that are the underlying causes of

the organizations desire for change. In this phase certain theoretical assumptions

about the nature of the organization and its problem domain are developed.

2. Action planning. Specification of organizational actions that should relieve or

improve the primary problems. In this phase a theory is formulated about how

to address the earlier identified problems.

3. Action taking. Researchers and practitioners collaborate in the active interven-

tion into the client organization, causing certain changes to be made.

4. Evaluating. Researchers and practitioners evaluate the outcomes of the action

taken. This evaluation includes determining whether the theoretical effects of the

action were realized, and whether these effects relieved the identified problems.

5. Specifying learning. The restructuring of organizational norms or theory to re-

flect the new knowledge gained by the organization during the research. This

phase may also indicate further action research interventions that are worth di-

agnosing. While the activity of specifying learning is formally undertaken last,

this reflection phase is usually an ongoing process that plays a role throughout

all other four phases.
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The specifying learning phase is a particularly important final phase, because it

resembles the double-loop learning approach of Argyris and Schön (1978), as op-

posed to single-loop learning in which not the organizational norms but only the

action strategy is adjusted (e.g., “let’s use yet another tool for...”). Double-loop

learning is more creative and reflexive in nature, which lends itself much better

to practitioners or organizations who need to make informed decisions or define

proper strategies in rapidly changing and often uncertain contexts (Argyris and

Schön, 1978). Therefore, for helping RFA with defining effective strategies for

sharing architectural knowledge, enabling double-loop learning by a reflective

specifying learning phase is crucial.

Between 2005 and 2009 we have conducted four case studies in RFA and a fifth

study in order to validate a theory that was constructed based on these case studies.

Each individual case study lasted around five months, and had its own scope, research

questions, and methodology. When looking at the bigger picture, however, these case

studies clearly resemble the aforementioned phases of an action research cycle. A

schematic overview of this cycle is depicted in Fig. 6.2. In the following subsections

we give an overview of each study in turn and explain to which action research phase

it corresponds.

Case study 1

Diagnosing the 

architecting process

Case study 2

Planning architectural 

knowledge sharing support

Case study 3

Supporting architects 

‘Just-In-Time’

Case study 4

Supporting architects 

using wikis

1. Diagnosing

Study 5

What architects do 

and what they need

2. Action Planning

3a.Action Taking

4a. Evaluating

3b. Action Taking

4b. Evaluating

5. Specifying Learning

Figure 6.2: Action research cycle
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6.4.1 Case study 1: Diagnosing the architecting process

In the first case study, which was conducted early 2006, we explored the status quo

in RFA with respect to architectural knowledge sharing. This study corresponds to a

diagnosis phase of an action research cycle, in which the main problems and points

for improvement are identified. In this case study we mainly focused on the architect’s

activities and his roles and responsibilities in the architecting process.

We quickly found that most mechanisms in place at RFA to share knowledge were

rather ineffective. For example an existing system for storing architecture guidelines

and best practices was barely used because architects deemed its added value rather

low. In order to understand what caused the problems with these tools and to indicate

some points for improvement, we zoomed in on four specific aspects of RFA’s archi-

tecting process: the architecting environment the architects operate in, the decision

making process of these architects, the architecture descriptions they produce, and the

various stakeholder roles and responsibilities.

While studying the architecting process of RFA, our first discovery was that ar-

chitects do much more than making design decisions or creating architectural descrip-

tions. We found that architects are also responsible for communication with internal

and external stakeholders, which showed itself through workshops, coffee room chats,

requirements negotiations, etc. In addition, many projects require some quality mon-

itoring of architects, during which they review existing architectural documentation,

verify whether architectural guidelines or rules are adhered to, check whether an ar-

chitecture solution conforms to reference architectures of customer organizations, and

during which they assess the feasibility of the architectural solution.

The second main discovery during this case study was an apparent lack of motiva-

tion of architects in RFA with respect to pro-actively sharing architectural knowledge.

It became clear that part of the reason for this was the fact that available knowledge

management tools had a poor usability, steep learning curve and quickly outdated con-

tents. Based on our diagnosis we defined a number of prerequisites for successfully

sharing architectural knowledge. The importance of these prerequisites is motivated

by demonstrating that they create some necessary incentives for architects to share ar-

chitectural knowledge.

6.4.2 Case study 2: planning architectural knowledge
sharing support

The second case study at RFA was conducted early 2007 and focused on establish-

ing properties that characterize effective architectural knowledge sharing tool support.

This case study makes for a typical action planning phase of an action research cycle,
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because in this study we formulated a theory to address the diagnosed problems of the

previous case study.

We looked into knowledge management and software architecture literature to see

what kind of dos and don’ts exist with respect to architectural knowledge sharing sup-

port. In parallel we evaluated existing tools in RFA to identify strengths and weak-

nesses. We culminated all insights into a number of desired properties for architectural

knowledge sharing tools.

One of the main insights gained in this case study is that architects benefit from

a so-called ‘hybrid’ strategy in sharing architectural knowledge. This means that a

proper combination between a codification and personalization strategy needs to be

found (Hansen et al., 1999). Other desired properties for architectural knowledge shar-

ing tools we identified include support for stakeholder-specific content, easy manipu-

lation of content and collaboration.

We used the above insights to design and implement a prototype web portal that

adheres to all desired properties for sharing architectural knowledge. This part of the

case study corresponds well to the description of an action plan in which the formulated

theory is made concrete and executable. The ‘action taking’ phase itself, in which we

used and evaluated the portal at RFA’s architecting process, was part of the next case

study.

6.4.3 Case study 3: Supporting architects ‘Just-in-Time’

The third case study at RFA was conducted mid-2007. In this case study we used

and tested the web portal developed in the previous study to improve the status quo at

RFA with respect to architectural knowledge sharing. We evaluated with a number of

architects what they liked and disliked about the portal. This case study is therefore a

combination of the ‘action taking’ and ‘evaluation’ phases of action research.

Before we started testing our portal we examined in more detail existing tools for

architectural knowledge sharing at RFA. We elicited from the architects what the lim-

itations are of these existing tools and which requirements they have for a potentially

new environment. This requirement elicitation was a continuation of the diagnosis we

conducted during our first case study (cf. §6.4.1), but also a validation of the theory

about effective tool support we established in our second case study (cf. §6.4.2).

The requirements elicitation part of this case study showed that architects need ef-

fective support for searching relevant information, managing documentation, and assis-

tance to easily get in touch with colleagues or other stakeholders. When we aggregated

these insights, we found that RFA’s architects were apparently in need of ‘Just-in-Time’

architectural knowledge, which we defined as access to and delivery of the right archi-

tectural knowledge, to the right person, at any given point in time. Increasing the access
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to and delivery of architectural knowledge will boost reuse of architectural knowledge,

stimulates learning among architects, and assists in assessing quality (e.g., by pointing

architects to reference architectures, best practice databases, and quality frameworks).

The testing of our web portal indicated that architects perceive it as a definite im-

provement over the existing tools at RFA. The fact that several community building

– or personalization – mechanisms (e.g., yellow pages, discussion boards) were com-

bined with codification techniques (e.g., repositories, project environments) offered the

architects an all-round platform to share architectural knowledge in various ways. The

intuitive user interface further helped motivate architects to actually use these tools,

i.e., create the necessary incentives for sharing architectural knowledge.

The strengths of our portal notwithstanding, during our evaluation the architects

also indicated a number of possible improvements. Interestingly, the architects did not

ask for new kind of functionality or features, but instead wished for more elaborate

support for some of the core parts of our portal, including more focus on collaboration,

communication and integration with other tools. We decided to take this feedback

seriously and planned for another case study of action taking and evaluation to address

these requirements.

6.4.4 Case study 4: Supporting architects using wikis

The fourth case study at RFA was conducted in the first half of 2008. In this case study

we explored the applicability of wikis as architectural knowledge sharing environment.

Wikis are strong in community building and in supporting collaboration, and during

the previous case study we found that architects needed more extensive support in

these areas. In terms of placing this case study in an action research cycle it is similar

to the previous one; the use and evaluation of a tool environment corresponds well to

the ‘action taking’ and ‘evaluation’ phases of action research.

In this case study, we learned that wikis have several characteristics that make them

suitable as knowledge sharing environment in the architecting process. Facilities to

hold discussions, group editing features and the very intuitive user-interface make wikis

a very lightweight yet versatile platform. In addition, the commercial enterprise wiki

we tested offers various integration mechanisms to other tools (such as Sharepoint web-

sites) and RFA’s file shares, which was greatly appreciated by the architects and was

considered a clear improvement over the portal we had shown to them in the previous

case study. They now finally had a single point of entry to a web of knowledge at their

disposal, which easily combines management of very specific architectural knowledge

(e.g., design decisions, best practices, patterns), but also related knowledge crucial for

any project (project documentation, progress reports, handbooks).

96



6.4. RESEARCH METHODOLOGY

Wikis are also quite suitable in creating a ‘community of architects’ in which ev-

erybody knows from each other where certain expertise, or experience resides. This

helps architects in various activities such as conducting reviews, writing reports, or

communication with stakeholders. The enterprise wiki we tested and evaluated offers

various plugins which add various interesting features, such as modeling support, gen-

eration of statistics and overviews, and even text mining features in combination with

database integration. We argue that these aspects can further support architects in their

daily work by offering ‘smart’ or pro-active support when needed, in a non-intrusive

way (e.g., automatically identifying patterns or rules from raw wiki content).

In this case study we found that wikis are able to create incentives for architectural

knowledge sharing, because in a short amount of time a lot of architectural knowledge

was contributed by the architects who participate in a pilot. We did learn, however, that

certain so-called ‘wiki patterns’ need to be kept in mind to prevent things going out

of hand (Mader, 2007). Examples are the appointment of wiki ‘gardeners’ who keep

the wiki organized, or the establishment of templates to enable uniform codification of

specific types of knowledge. These insights showed that a versatile tool in itself is not

enough; process rules and guidelines are needed to make effective use of the tool and

to position it correctly in the architecting process.

6.4.5 Study 5: What architects do and what they need

By combining insights gained during our all four case studies we have created a the-

ory of what architects do and what kind of support they need for sharing architectural

knowledge. This theory building step corresponds to the specifying learning stage,

which denotes the ongoing process of documenting and summing up the learning out-

comes of the action research cycle.

To validate our theory, in this final study that was conducted early 2009 we con-

ducted large-scale survey research in four IT organizations in the Netherlands, in-

cluding RFA. In total 279 practicing architects were asked about their daily activities,

and how important they consider the various types of support for sharing architectural

knowledge.

Our survey results showed that architects do make lots of architectural decisions,

but neglect documenting them. Producing and subsequently sharing of architectural

knowledge is clearly not one of their most popular activities. While in itself not very

surprising, one would expect that support to help architects with this latter task is some-

thing they appreciate. The opposite is true. Architects rather stay in control and are

not interested in automated or intelligent support. When it comes to consumption of

architectural knowledge, however, support for effective retrieval of (stored) architec-

tural knowledge is on the top of their wish list. This apparent contradiction suggests
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architects are rather lonesome decision makers who prefer to spend their working life

in splendid isolation.

This study showed that for architectural knowledge sharing support to be effective,

this support should stimulate architects in both producing and consuming architectural

knowledge. Integrated, ‘all-round’, tools environments that implement a variety of ar-

chitectural knowledge sharing use cases, seem promising because they could provide a

balance between production and consumption of knowledge in the architecting process.

6.5 Research Methods

Software engineering research is often qualitative in nature (Glass et al., 2002) and ours

is no exception. A difference, however, is that software engineering research usually

does not consider social and organizational aspects. As indicated in §6.4 the GRIFFIN

consortium enabled a tight collaboration between researchers and practitioners, making

the choice to conduct action research a logical one.

Action research is more of a holistic approach to problem-solving, rather than a

single method for collecting and analyzing data (O’Brien, 1998). It allows for various

methods to be used, which are generally common to the qualitative research paradigm.

Holz gives an overview of research method being used in computing (Holz et al., 2006).

From this list, we list the ones applicable to our action research below. Table 6.1 depicts

an overview of these research methods and shows to which action research phase they

belong and which research questions we have answered using these methods.

Table 6.1: Overview of research methods
 

Study Action research 

phase

Research methods Research 

questions

1: Diagnosing the architecting process Diagnosing Case study

Document analysis

Exploratory survey

Interviews

Critical analysis of the literature

RQ- II.4,

RQ- II.5

2: Planning AK sharing support Action planning Case study

Interviews

Critical analysis of the literature

RQ- II.6

3: Supporting architects 'Just-In-Time' Action taking & 

evaluation

Case study

Interviews

Prototype experiments

RQ- II.7

4: Supporting architects using wikis Action taking & 

evaluation

Case study

Interviews

Prototype experiments

RQ- II.7

5: What architects do and what they need Specifying learning Survey RQ- II.2,

RQ- II.3
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∙ Case studies. As mentioned before we have conducted a series of four case

studies in RFA. We use a standard definition of case study here: “the collection

and presentation of detailed information about a particular participant or small

group, frequently including the accounts of subjects themselves” (Holz et al.,

2006). Key property of case study research is that it is exploratory in nature,

which lends itself well for action research activities. We did not focus on the

discovery of a universal, generalizable truth, nor did we typically look for cause-

effect relationships. Instead, emphasis is put on exploration and description. As

explained in §6.4 the exact scope and focus of each of the four case study was

different.

∙ Document analysis. In order to retrieve more information on how architectural

knowledge was captured in RFA in the first case study we used document analy-

sis. This included examination of system software and documentation, technical

papers, architectural standards, reference material, etc. During this analysis we

gained initial insight into the terminology used and the kind of architectures that

were developed.

∙ Exploratory survey. In contrast to a normal (or full) survey, this research

method aims at conducting an exploratory field study in which there is no test

of relationships between variables (Holz et al., 2006). In the first case study we

used an exploratory survey about use cases for architectural knowledge.

∙ Interviews. This is a research method for gathering information by posing ques-

tions to people, using an interviewer. Interviews can be structured or unstruc-

tured with respect to the questions asked or the answers provided. We used

semi-structured interviews in all four case studies. This means that a set of ques-

tions was made in advance and placed in a logical order by the interviewer, in

order to have a high-level structure to steer the conversation. However, based on

the answers of the interviewee sufficient freedom exists to ask follow-up ques-

tions or to focus on new unexplored topics.

∙ Critical Analysis of the Literature. This method is defined as “an appraisal of

relevant published material based on careful analytical evaluation.” (Holz et al.,

2006). Although adopting an explicit knowledge management perspective to

software architecting is rather novel, we were able to draw upon existing litera-

ture about knowledge management in software engineering, instead of having to

start from scratch. Although relevant literature was studied during all five stud-

ies, a more critical review of relevant literature was done in the first and second

case study.
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∙ Prototype Experiments. In the third and fourth case study we constructed pro-

totype tooling (respectively a web portal and a wiki) to support sharing of archi-

tectural knowledge. In both studies we have validated the added value of these

tools by asking architects to experiment with these tools and to provide feed-

back. The prototype experiments we conducted involved using and evaluating

the tools by practicing architects in a real-life setting, as opposed to experiments

conducted in a laboratory setting.

∙ Survey. In our fifth study we conducted a large scale survey in which 279 archi-

tects participated. The survey was carefully designed and contained all standard

phases and analyses of proper survey research, including theory formulation,

survey design, question formulation, scale construction, hypothesis formulation

and testing (cf. (Kitchenham and Pfleeger, 2001-2002)).

6.6 Outline of Part II

The following five chapters correspond to the five studies mentioned earlier. Taken

together they form the action research cycle as depicted in Fig. 6.2 and they help an-

swering the research questions listed in §6.3.

∙ In Chapter 7 we identify a number of organizational challenges related to ar-

chitectural knowledge sharing (RQ-II.4). Based on this diagnosis we define a

number of prerequisites for sharing architectural knowledge (RQ-II.5).

∙ In Chapter 8 we identify the desired properties of architectural knowledge shar-

ing tools (RQ-II.6) by studying typical characteristics of architecting and what

knowledge management techniques can be applied to the software architecture

domain. A prototype web portal is designed that has all these properties.

∙ In Chapter 9 we investigate what architects consider the desired approach or

strategy for sharing architectural knowledge (RQ-II.7). Based on these insights

we experiment with the Just-in-Time web portal for architectural knowledge.

This portal is constructed based on the design made in the previous chapter.

∙ In Chapter 10 we continue to elicit what architects need (RQ-II.7) by exploring

the applicability of wikis as architectural knowledge sharing environment. We

experiment with an enterprise wiki for architectural knowledge as improvement

over the portal of the previous chapter.
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∙ In Chapter 11 we identify what architects do and what they need with respect

to sharing architectural knowledge. A theory of architecting activities (RQ-

II.2) and support methods for sharing architectural knowledge (RQ-II.3) is con-

structed based on the earlier case studies, and this theory is validated through a

survey.

To conclude Part II, in Chapter 12 we revisit the research questions addressed dur-

ing the five studies of our action research cycle (RQ-II.2 - RQ-II.7). Together these

research questions answer our main research question (RQ-II.1). In Chapter 12 the

main contributions of Part II are culminated in a number of lessons learned.

6.7 Publications

Most of the research presented in Part II has either been published previously or is

currently in press. The chapters in this part are based on the following publications.

Parts of Chapter 7 have been published as:

∙ Farenhorst, R. Tailoring Knowledge Sharing to the Architecting Process. ACM

SIGSOFT Software Engineering Notes, 31(5), 2006.

∙ Farenhorst, R., P. Lago, and H. van Vliet. Prerequisites for Successful Architec-

tural Knowledge Sharing. In 18th Australian Software Engineering Conference

(ASWEC 2007), pages 27–36, IEEE Computer Society, 2007.

Parts of Chapter 8 have been published as:

∙ Farenhorst R., P. Lago, and H. van Vliet. Effective Tool Support for Architec-

tural Knowledge Sharing. In 1st European Conference on Software Architecture

(ECSA 2007), pages 123–138, Springer, 2007

∙ Farenhorst R., P. Lago, and H. van Vliet. EAGLE: Effective Tool Support for

Sharing Architectural Knowledge. International Journal of Cooperative Infor-

mation Systems, 16(3&4): 413–437, World Scientific Publishing Company, 2007.

Parts of Chapter 9 have been published as:

∙ Farenhorst R., R. Izaks, P. Lago, and H. van Vliet. A Just-In-Time Architectural

Knowledge Sharing Portal. In 7th Working IEEE/IFIP Conference on Software

Architecture (WICSA 2008), pages 125–134, IEEE Computer Society, 2008.

Parts of Chapter 10 have been published as:
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∙ Farenhorst, R. and H. van Vliet. Experiences with a Wiki to Support Architec-

tural Knowledge Sharing. In 3rd Workshop on Wikis for Software Engineering

(Wikis4SE’08), Porto, Portugal, 2008.

Parts of Chapter 11 have been published as:

∙ Farenhorst, R., J.F. Hoorn, P. Lago, and H. van Vliet. What Architects Do and

What They Need to Share Knowledge. Technical Report IR-IMSE-003, VU Uni-

versity Amsterdam, April 2009.

∙ Farenhorst, R., J.F. Hoorn, P. Lago, and H. van Vliet. The Lonesome Architect.

In Joint Working IEEE/IFIP Conference on Software Architecture & European

Conference on Software Architecture (WICSA/ECSA 2009). In press.

Finally, parts of the lessons learned and research methodology overview of this

chapter have been published as:

∙ Farenhorst, R. and H. van Vliet. Understanding How to Support Architects in

Sharing Knowledge. In 4th Workshop on SHAring and Reusing architectural

Knowledge (SHARK’09). IEEE Computer Society, 2009.
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7
Organizational Challenges to Sharing

Architectural Knowledge

In order to successfully share architectural knowledge, some organizational challenges

need to be overcome. In this chapter we elaborate on these challenges by reporting on

our first case study at RFA. Based on this diagnosis we define a number of prerequisites

that need to be met to promote sharing of architectural knowledge. The importance

of these prerequisites is motivated by demonstrating that they create some necessary

incentives for sharing architectural knowledge.

7.1 Introduction

In recent literature warnings are presented for the fact that not all knowledge sharing

implementations are successful automatically. Ghosh (2004) lists several factors that

make knowledge sharing difficult, such as the fact that knowledge sharing is time con-

suming, and that people might not trust the knowledge management system. Another

warning is that it is infeasible to strive for completeness. Lakshminarayanan et al.

(2006) note that it is impossible to create a tool to reason about all the issues that an

architect would normally need to consider. Finally, we should be aware of the fact that

a lot of the available knowledge cannot be made explicit at all, but instead remains tacit

in the minds of people (Nonaka and Takeuchi, 1995). Sharing this tacit knowledge is

very hard, as stated by Haldin-Herrgard (2000).

The above warnings clearly indicate that successful architectural knowledge shar-

ing involves more than just choosing the right software tool. We argue that successful

architectural knowledge sharing can only be achieved if the necessary incentives are

created. These incentives induce stakeholders to share valuable architectural knowl-
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edge, such as the major design decisions made, the underlying rationale for these deci-

sions, and alternatives that were considered.

To find empirical evidence for the warnings sketched above, we conducted a first

case study at RFA to study the state of the practice with respect to sharing architec-

tural knowledge. In this chapter we report on this study, in which we explored current

methods for sharing knowledge and the issues related to these methods. We quickly

discovered that these issues were not mere technical in nature; various organizational

challenges exist that need to be overcome to guarantee successful sharing of architec-

tural knowledge.

To identify RFA’s challenges with architectural knowledge sharing, we zoomed in

on four specific aspects of its architecting process: the architecting environment the

architect operates in, the decision making process of these architects, the architecture

descriptions they produce, and the various stakeholder roles and responsibilities. We

did so by conducting interviews, an exploratory survey and document analysis. In

addition, we reviewed knowledge management literature to acquire insight on sharing

knowledge in such an organizational context.

Our diagnosis of RFA’s architecting process revealed a number of issues related to

sharing architectural knowledge in this organization, which suggested that knowledge

sharing practices in this organization were rather immature. We investigated how to

improve this situation and identified a number of prerequisites for sharing architectural

knowledge. We underline the importance of these prerequisites by demonstrating that

they create incentives to architects for sharing knowledge.

The remainder of this chapter is organized as follows. In §7.2 we use insights

gained from literature to identify a set of incentives for architectural knowledge shar-

ing. §7.3 describes the case study conducted including the research methods used for

our diagnosis of the architecting process of RFA. Based on this diagnosis, in §7.4 we

discuss a number of issues pertaining to architectural knowledge sharing. In §7.5 we

propose a set of prerequisites for sharing architectural knowledge, and demonstrate

how these prerequisites create the necessary incentives for architectural knowledge

sharing. Finally, §7.6 concludes this chapter by revisiting the research questions an-

swered by this case study.

7.2 Incentives for Sharing Architectural

Knowledge

In the architecting phase of software development, a lot of implicit and explicit knowl-

edge is required to take appropriate architectural design decisions. This knowledge
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is usually scattered across the organization. Various stakeholders, such as software

developers, architects, project managers, and maintainers, all possess knowledge that

can be of value when developing the software architecture. We assert that sharing

this knowledge between these stakeholders leads to a number of ‘intrinsic’ benefits. If

stakeholders would recognize these benefits, it would induce them to share valuable

architectural knowledge. In this sense, these benefits act as incentives for architectural

knowledge sharing.

Based on insights gained from related knowledge management literature (Argote,

1999; Bresman et al., 1999; Cummings, 2003; Ghosh, 2004; Haldin-Herrgard, 2000),

as well as our own experience in software architecture research, we have identified

three main incentives for architectural knowledge sharing. We argue that these incen-

tives need to be created in order to promote successful architectural knowledge sharing.

Below, they are elaborated in turn.

1. Establishment of social ties. Research has shown that if stakeholders trust each

other and the ‘competition’ between them is minimized, the motivation for coop-

eration and sharing knowledge is higher (Argote, 1999). Moreover, individuals

will only participate willingly in knowledge exchange once they share a sense

of identity or belonging with their colleagues (Bresman et al., 1999). Sharing

knowledge with these colleagues may then further increase the trust between

them, thereby improving relationships. Establishing social ties, either by an in-

crease of trust or by less competition between stakeholders, therefore acts as an

incentive for knowledge sharing.

This incentive for knowledge sharing also applies to the software architecture

domain. When typical stakeholders in the architecting process, such as project

managers, developers, or architects, collaborate in the decision making pro-

cess and exchange ideas or expertise, the social ties between them will become

stronger.

2. More efficient decision making. According to Cummings (2003) a group’s per-

formance increases when everyone in this group is informed of each other’s ex-

pertise. This is because such knowledge allows groups to engage in joint brain-

storming sessions in which group members are able to explore new ideas and

discuss difficult issues.

This increase in group performance is something architects in a software archi-

tecture environment benefit from. For software architects it is often very impor-

tant to not only get feedback from colleague architects, but also from developers

or maintainers when developing the software architecture. Developers may have

a lot of expertise and their insights and experience can benefit the architects in
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an early stage. The same holds true for maintainers that may have gathered

knowledge on the actual pros or cons of past decisions. Architectural knowl-

edge sharing creates a feedback loop between architects and other stakeholders

in the architecting process. Having such a feedback loop greatly improves the

efficiency of the decision-making process and is therefore an incentive for archi-

tectural knowledge sharing.

3. Knowledge internalization. When actively sharing knowledge, people are able

to communicate valuable experience with each other. This experience is then

stored as tacit expert knowledge in their minds. This process is called knowledge

internalization (Nonaka and Takeuchi, 1995). Knowledge internalization refers

to the degree to which a recipient obtains ownership of, commitment to, and sat-

isfaction with the transferred knowledge. When knowledge is fully internalized

by a recipient, it becomes theirs. Consequently, tacit knowledge increases the

quality of the work and makes the work go smoothly (Haldin-Herrgard, 2000),

and the more knowledge is shared, the more knowledge can be internalized by

practitioners.

Knowledge internalization greatly assists software architects in their daily prac-

tice. Having internalized valuable experiences aids them in avoiding sub-optimal

solutions, but also enables them to learn from mistakes, such as ‘bad’ design

decisions or architectures that have been developed in the past but now cause

headaches. As a result, the software architectures that are being developed are

based on a set of decisions that is more carefully considered, and therefore have

a higher overall quality.

7.3 Diagnosing the Architecting Process

In the first case study at RFA, during which we were actively involved with architects

and other stakeholders, we diagnosed how architectural knowledge is shared in prac-

tice. Although this organization acknowledges the importance of software architec-

tures, discussions with architects and developers indicated that the organization strug-

gles with how software architecture development - using methods, techniques, and

tools - can best be fit in the overall development process, and how architectural knowl-

edge can best be shared and (re)used.

Within the architecture department of RFA a tool is used that guides the architects

in the architecting process. This tool was specifically designed to support architects in

designing a software architecture, i.e., in taking the right architectural design decisions.

To this end it contains of a set of guidelines to select the appropriate architectural
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solution based on the input provided by the architect. The input of this tool consists

of answers to a number of questions that mostly focus on quality aspects of the system

to be developed. The output of the tool is a generated document that is then further

refined into a final version of the architecture description of the system.

One of the main triggers for conducting this case study was the fact that the afore-

mentioned tool is seldom used by architects. Although envisioned as a suitable means

to share experiences and best practices related to software architectures, apparently

architects do not perceive its added value. Our main goal was to find the underlying

reason for the lack of success of this tool, by focusing on the architecting process as a

whole.

We used three main research methods for our diagnosis: an exploratory survey con-

taining several use cases for architectural knowledge, a documentation study of stan-

dards, best practices and architectural descriptions, and finally a set of open interviews

with various stakeholders of the architecting process.

∙ Exploratory survey. We used an an exploratory survey consisting of 27 poten-

tial use cases for architectural knowledge. A more elaborate description of these

use cases is given in (van der Ven et al., 2006a). We asked 15 architects how

important they consider these use cases, by letting them give scores on a scale

from 1 to 5. We ranked the use cases by counting the total scores they received

from the 15 architects. Among the five use cases that rank highest are three use

cases that are clearly devoted to sharing architectural knowledge:

– Take a design decision based on explicit concerns of a stakeholder.

– Explain to stakeholders (the impact of ) a design decision that is taken.

– Keep stakeholders up-to-date on a certain (new or changed) design deci-

sion.

This indicates that there is a clear interest in sharing architectural knowledge

within this organization.

∙ Documentation study. In order to retrieve more information on how architec-

tural knowledge is currently shared, we examined available documentation such

as architectural standards and best practices, example architecture documents,

and related functional and technical system documentation. During this docu-

mentation study we gained initial insight into the terminology used and the kind

of systems that are developed.
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∙ Interviews. We held 17 semi-structured interviews with various kinds of stake-

holders, among which were architects, developers, maintainers, project man-

agers, and software testers. The interviews were open and focused on how the

interviewees perceive architectural knowledge in the organization. Since the in-

terviewees were asked to elaborate their answers the interviews provided us with

detailed information on how architects and other stakeholders use architectural

knowledge, what their knowledge need is, and what the current limitations are

regarding architectural knowledge sharing.

Using the survey, documentation study, and interviews as primary sources, we col-

lected an extensive amount of information about the architecting process of RFA. We

structured the collected information using four perspectives, based on a schematic out-

line of the architecting process that was presented in Chapter 4, Fig. 4.4. In that figure

the stakeholders are positioned centrally. This corresponds to the notion that a soft-

ware architecture should be stakeholder-driven. The stakeholders, in particular the ar-

chitects, take decisions according to their roles. These decisions can be influenced by

environmental events, i.e., events that are relevant but not always explicitly recognized

as being of influence to software development, such as budget constraints. The deci-

sions are reflected in design artifacts and architectural descriptions, e.g., documented

views, but also ‘lower-level’ artifacts such as source code. A stakeholder responsible

for an artifact changed due to a decision might find a need to take subsequent decisions.

The responsibilities are defined by the stakeholders’ role(s).

Based on the schematic outline of the architecting process, we define four perspec-

tives that provide us with information on how software architecting is implemented in

an organization. These perspectives focus on the environment, the decision-making

process, architectural descriptions, and stakeholders’ roles and responsibilities respec-

tively.

1. The architecting environment perspective, which targets the broad context in

which the software architectures are developed.

2. The decision making perspective, which puts the architectural design decisions

and their rationale central.

3. The architectural descriptions perspective, which focuses on the design arti-

facts that are constructed.

4. The stakeholder roles and responsibilities perspective, which examines the

stakeholders and their roles.
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Viewing RFA’s architecting process from these four perspectives allowed us to re-

trieve information specific to important aspects of the architecting process, and to cap-

ture the recursive nature of this process, which is described by Hofmeister et al. (2007).

Other approaches tend to focus on either the decision making process, without explic-

itly looking at the process in which the decisions are being taken (e.g., (Kunz and Rittel,

1970) and its descendants), or on the design artifacts (e.g., (IEEE 1471)).

In the remainder of this chapter we use our observations with respect to architec-

tural knowledge sharing at RFA to determine a set of prerequisites that address the

knowledge sharing issues. In the following subsections we summarize the findings by

focusing on each of the four different perspectives in turn.

7.3.1 Architecting environment

Architect: “Even though it was clear that the system’s performance was

worse when using this type of database connections, the customer strictly

referred to its reference architecture that forbids any alternatives. Further

discussion on this issue was not possible.”

RFA has a large organization as its main customer. This customer organization

has its own architecture department that has strict control over the system develop-

ment. Based on this customer organization’s reference architecture, constraints have

been defined for individual systems. Often there is little room for deviating from these

constraints.

Because of the existing systems that are already in place in the customer organiza-

tion, little or no systems are developed based on a ‘greenfield’ situation. Often, new

systems have to replace or extend an existing system. RFA had developed a knowledge

repository to guide architects in creating an architecture, but this repository is mainly

intended for ‘greenfield’ system development. The guidelines used by the repository

do not comply with the reference architecture of the main customer. Architects at RFA

acknowledged that if crucial architectural knowledge about the reference architecture

is added to the repository, the quality and efficiency of decision making will increase.

Nevertheless, as of yet no effort has been taken to implement this. Therefore, when

using the repository, chances are that architectural solutions proposed are in conflict

with the constraints defined by the customer.

One can argue that among the most interesting architectural knowledge worth shar-

ing is that of the customer organization. The fact that this is not done in the current

repository is one of the main reasons for architects not to use it. This was confirmed in

interviews held with four different architects.
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7.3.2 Decision making

Developer: “It is often the case that me and my colleagues take the major

design decisions, while the architect’s main function is that of a scribe.

The architecture documentation he creates reflects the decisions we have

taken.”

We found out that currently in RFA the architects do not have overall control over

the decision making process. Developers often possess more technical expertise and

are more up-to-date with the functional and technical constraints posed by the cus-

tomer. Therefore, they make most of the technical design decisions. In addition, since

the customer organization dictates certain rules that have to be adhered to, already sev-

eral decisions have been made at the start of the architecting process. Architects and

developers maintained in the interviews that they have only limited freedom in taking

design decisions. They decide mainly on more localized and less cross-cutting issues,

such as the kind of development tools to be used.

Above observations are in contrast with the statement that the architect is taking the

main design decisions (Eeles, 2006b). Architects in RFA do not create much architec-

tural knowledge to share with other stakeholders; they act more as mediators between

the customer organization and the development teams. Architects are responsible for

the overall quality of the system to be built, and therefore need to solve conflicting

decisions, make the right tradeoffs, and check whether development teams comply to

the architecture. Therefore, for them it is important that knowledge created within the

customer organization or within the development teams is shared. Both project man-

agers and architects confirmed in the interviews that this feedback loop would allow

architects to build up expertise, gain practical insights, and define best practices for

future software architectures.

7.3.3 Architectural descriptions

Maintainer: “Up until this interview I didn’t know there existed an archi-

tecture description of the system.”

Not all stakeholders agree with the level of detail that is to be used in the views of

the architectural description. Developers and maintainers indicated in the interviews

that they consider most of the views too high-level. Project managers on the other hand

think the architectural descriptions are clear and nicely suited for non-technical people

as well.

Architectural knowledge is not only found in the standard architecture documenta-

tion, but also scattered around in technical and functional design documents used by
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developers and maintainers. Many interviewees stressed the need for collaboration and

sharing important information between architects, developers and maintainers.

Although some views in the architecture description are targeted at the maintainers,

maintainers are unaware of the information that is described for them. In a meeting with

five maintainers it became clear that none of them had seen the architecture description

of the system they were maintaining before.

To sum up, architectural descriptions can be a powerful means to summarize and

share essential information on the system that is developed. However, a necessary

precondition then is that the granularity of the information matches the expectations

and the knowledge needs of the receiver. In this case study we observed that this is

currently not the case in RFA. Developers and maintainers consider the architecture

description too high-level, whereas the architects are under the impression that specific

viewpoints are of the right level of detail. We thus believe that knowledge sharing

could be more effective if the information need of the stakeholders involved is used as

a basis when describing the architecture.

7.3.4 Stakeholder roles and responsibilities

Architect: “Basically, the architecture description is finished as soon as

the project manager and lead developers give their approval. After this,

my job ends and I am no longer responsible for keeping the architectural

description up-to-date.”

In RFA architects are not responsible for maintaining the architecture document

after the system has been developed. Since no other ‘owners’ of this document exist,

it soon becomes outdated. This is one of the reasons for the fact that architectural

descriptions are not often read by developers and maintainers.

The architect does not fulfill a prescriptive role in the architecting process that

allows him to take all major architectural design decisions, but rather a descriptive

one in which he is the mediator between the customer organization and the technical

stakeholders. However, the knowledge repository introduced in §7.3.1 is designed to

be prescriptive, and supports architects in making decisions. Because of this mismatch,

the repository turned out to be unpopular among architects and seldom used.
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7.4 Issues Related to Sharing Architectural

Knowledge

Based on the results described in the previous section, we conclude that the avail-

able mechanisms for sharing architectural knowledge are not optimally implemented

at RFA. From the case study results we have distilled six issues related to sharing

architectural knowledge. Fig. 7.1 depicts a object-interaction diagram of RFA’s cur-

rent architecting process that was constructed using the FRS method introduced in

Chapter 4. This diagram helps visualizing the issues by highlighting the five different

stakeholders of the architecting process and how they communicate. The rectangular

elements represent entities; the elliptical ones denote actions on or with these entities.

Arrows indicate the creation of new instances of an entity. Actions and entities that are

linked together can be read as sentences, e.g “An architect takes an architectural design

decision”. The six issues identified are:
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Figure 7.1: Current architecting process
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1. No consistency between architecture and design documents. There is no

alignment between the architecture descriptions and the functional design and

technical design documents used by developers and maintainers. Because of the

lack of alignment, valuable architectural knowledge might be dispersed in RFA

without the architects knowing it. Consequently, it is hard to judge whether the

architectural description conflicts with the design that is preferred by the devel-

opers. This lack of alignment is visualized in Fig. 7.1 by the absence of a direct

connection between the functional and technical design documents shown at the

left part and the architectural description shown at the right part. Architectural

knowledge in a technical design document that needs to be shared therefore has

to travel through two different stakeholders to reach the architecture description.

2. Communication overhead between stakeholders. Developers occasionally

have to explain the architects technical decisions more than once. The reason

for this is that decisions made in earlier meetings, including the rationale for

these decisions, are not adequately stored in the architecture description. This

knowledge sometimes dissipates quickly. Consequently, architects need to meet

again with the developers to get this knowledge explicit at a later point in time.

This problem of communication overhead is depicted in the right part of Fig. 7.1

by the lack of an explicit connection between design decisions taken by devel-

opers and the architectural description created by the architect.

3. 3. No explicit collaboration with maintenance teams. Although maintain-

ers are targeted in the architectural documentation, they are not involved as a

stakeholder in the architecting process. No active discussions between architects

and maintainers take place and the requirements of the maintenance teams are

not taken into account during architecture development. The lack of a connec-

tion between the maintenance team and the architect in Fig. 7.1 illustrates this

problem.

4. 4. No feedback from developers to architects. Developers sometimes wear the

hat of the architect and also make design decisions. However, architects are not

informed on the decisions made by the developers unless explicit meetings take

place. There is no mechanism in place that allows developers to share what they

are doing. Therefore, it is very difficult for the architect to find out what kind of

technical issues are encountered or what detailed decisions are taken. The lack

of feedback from developers to architects is reflected in the center of Fig. 7.1 by

the lack of communication between the development team and the architect.

5. 5. No up-to-date knowledge from development teams in repository. The ar-

chitectural knowledge repository contains little to no information on the ‘best
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practices’, technology standards, and expertise currently available at develop-

ment teams. Therefore, the repository is unable to advise architectural directions

that match with the development processes. This problem is visualized in Fig. 7.1

by the fact that design decisions made by the developers are disconnected from

the knowledge repository.

6. 6. No up-to-date knowledge from main customer in repository. The archi-

tectural knowledge repository also lacks up-to-date knowledge on the customer

organization’s reference architecture. Therefore, the repository cannot give ar-

chitectural directions that automatically comply with the constraints posed by

this reference architecture. This is illustrated in Fig. 7.1 by the isolated reference

architecture in the top right corner.

7.5 Prerequisites for Successful Architectural

Knowledge Sharing

The six issues listed in §7.4 suggested that in RFA architectural knowledge sharing

practices were rather immature. We have investigated how the architecting process

of this organization needs to be changed in order to improve architectural knowledge

sharing. We propose four prerequisites that have to be met in order to change the

architecting process in such a way that all six architectural knowledge sharing issues

are addressed. We argue that meeting these four prerequisites leads to an improved

architecting process in which architectural knowledge is successfully shared.

The four prerequisites are listed below. Two of them are illustrated in more detail in

Fig. 7.2 and Fig. 7.3 by showing the differences between the current and the improved

architecting process. The thick boxes and lines in this figure highlight the domain

entities and actions that relate to the issues in the current process and the solutions to

these issues in the improved process.

1. Alignment between design artifacts. Architectural descriptions need to be

aligned with other design documents. This can be done by enriching the ar-

chitectural description with links to relevant (lower level) design documents, al-

lowing developers or more technical stakeholders to more easily find their way

in the set of documentation. Keeping these links up-to-date ensures that the ar-

chitecture description always reflects the current state of the system, rendering

it a good starting point for stakeholders that want to know something about the

system. This prerequisite deals with issue #1: ‘No consistency between archi-

tecture and design documents’. In the left part of Fig. 7.2 is visualized how this
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Issue #1: No consistency between 
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Figure 7.2: Addressing architectural knowledge sharing issue #1

is done. At the top left of this figure the current situation is depicted. There is

a clear distance between the architectural description used by the architect on

the one hand, and the functional and technical design documents used by the
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development team and maintenance team on the other hand. The absence of a

direct connection between these documents is highlighted by the thick dashed

line. This line indicates that there is no check for consistency possible between

these documents. In the improved situation, depicted in the lower left part of the

figure, the alignment between design artifacts enables this consistency check.

2. Traceability between architectural decisions and descriptions. If all archi-

tectural design decisions are documented using specific templates (e.g., using

the one proposed by Tyree and Akerman (2005)), including considered alter-

natives and the rationale for the decisions, architectural descriptions provide a

good summary of the decision-making process that leads to a certain architec-

ture. Documenting the valuable architectural knowledge prevents its dissipation.

As a result, communication between architects and other stakeholders, such as

developers, will improve since the current state of the architecting process is

known at all times. Consequently, discussions do not need to be held more often

than necessary. This prerequisite therefore addresses issue #2: ‘Communication

overhead between stakeholders’.

3. Architects fulfill a central role. The architects need to fulfill a central role in

the architecting process. This guarantees better communication with all involved

stakeholders through frequent formal and informal meetings, direct involvement

of developers in decision-making, and better collaboration with the maintenance

teams. This prerequisite addresses issues #3: ‘No explicit collaboration with

maintenance teams’ and #4: ‘No feedback from developers to architects’.

4. Central architectural knowledge repository. A central architectural knowl-

edge repository allows for storing valuable input on the decision-making process

from all stakeholders involved. This improvement is visualized in the right part

of Fig. 7.3. In the top right of this figure, the current situation is depicted. Here,

the architectural knowledge repository is isolated and valuable knowledge, such

as experience from developers or knowledge stored in the reference architecture

within the customer organization, is not contained in this repository. In the im-

proved situation this knowledge is stored in a ‘central’ architectural knowledge

repository. The thick lines indicate that this repository is positioned as a central

storage facility for architectural knowledge. This prerequisite therefore directly

addresses issues #5: ‘No up-to-date knowledge from development teams in repos-

itory’ and #6: ‘No up-to-date knowledge from main customer in repository’.

In the discussion of the four prerequisites for successful architectural knowledge

sharing, we have indicated how the issues found at RFA are addressed. The mapping
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Issue #5+6: No up-to-date knowledge from 

development teams or main customer in 

repository
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Figure 7.3: Addressing architectural knowledge sharing issue #5+6

between the six identified issues and the prerequisites that address these issues, is fur-

ther illustrated in the left part of Fig. 7.4.

We argue that architectural knowledge sharing in practice significantly improves if
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all four of these prerequisites are met. In order to show the importance of these prereq-

uisites, the right part of Fig. 7.4 illustrates that these prerequisites create the identified

incentives for sharing architectural knowledge. These incentives are created as follows.

Ensuring ‘alignment between design design artifacts’ and ‘adding traceability between

architectural decisions and descriptions’ both improve the quality of knowledge that is

made explicit and subsequently shared. As described in §7.2, this positively affects the

amount of knowledge that is internalized by stakeholders, hence creating the ‘knowl-

edge internalization’ incentive.

The incentive ‘establishment of social ties’ is created by allowing the ‘architects

to fulfill a central role’ in the architecting process. The improved communication ini-

tiated by architects can create a bond between stakeholders that induces architectural

knowledge sharing. The internal competition is minimized as architects stress the need

for cooperation, and by working more closely together the trust between stakeholders

also increases. More extensive knowledge sharing establishes social ties, as explained

in §7.2.

Finally, implementing a ‘central architectural knowledge repository’ enables a

feedback loop between developers, maintainers and architects. All stakeholders use
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Figure 7.4: Mapping prerequisites to the identified issues and incentives
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the central repository to monitor the status and progress of the architecture, and are

able to participate in the decision making process by sharing expertise, best practices

and common sense. This improves the overall group performance. As explained in

§7.2 the existence of this feedback loop results in ‘more efficient decision making’.

In this section we have shown that the issues identified during the case study are

all addressed if methods and means to share architectural knowledge meet the pro-

posed prerequisites. Next to this, the fact that the four prerequisites map onto the three,

context-independent, incentives identified in §7.2, denotes the value of these prerequi-

sites; not only in the context of RFA, but in general. Sharing architectural knowledge is

crucial in any architecting process; creating the necessary incentives motivates stake-

holders to do so in an efficient and successful way.

7.6 Conclusions

In Fig. 7.5 our research contribution is visualized schematically. In this figure, the

numbers between the parentheses denote the main results presented in this chapter.

Based on a literature review on knowledge management principles, combined with

our own experience in software architecture research, we identified (1) three incentives

for sharing architectural knowledge: the establishment of social ties, more efficient

decision making, and knowledge internalization. In addition, in this first case study

we diagnosed how architectural knowledge is shared in RFA. From this diagnosis, we

identified (2) a set of issues pertaining to sharing architectural knowledge. In order to

address these issues, we proposed (3) a set of prerequisites for architectural knowledge

sharing.

Issues related to

AK sharing
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AK sharing
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Case study: AK Sharing in Practice

Figure 7.5: Research contribution
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We argue that successful architectural knowledge sharing is only possible if these

prerequisites are met. We demonstrated this claim by showing that these prerequisites

not only address the identified issues, but also create the identified incentives for shar-

ing architectural knowledge. This demonstration indicated that these prerequisites are

crucial to foster successful architectural knowledge sharing; not only in the context of

RFA, but in general. To answer research question RQ-II.5 we learned that success-

ful sharing of architectural knowledge requires 1) alignment between design artifacts,

2) traceability between architectural decisions and descriptions, 3) architects who ful-

fill a central role in the architecting process, and 4) a central architectural knowledge

repository.

To diagnose the challenges related to architectural knowledge sharing, we have

modeled the architecting process of RFA using four different perspectives. This al-

lowed us to diagnose the issues related to architectural knowledge sharing. These issues

are all organizational challenges that need to be addressed in order to guarantee effec-

tive sharing of architectural knowledge, so the identification of these issues has helped

us answering research question RQ-II.4. Next to acting as a diagnosis instrument, our

modeling approach served as an implementation instrument to help us suggest how the

architecting process of RFA should be improved.

Our next goal is to define and implement methods and tools for sharing architectural

knowledge. The results of this chapter indicate that in order to make these methods

and tools effective, it is important that this further enables the proposed prerequisites

for architectural knowledge sharing. In the next chapter, we study desired properties of

tools to support sharing of architectural knowledge more elaborately.
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8
Effective Support for Sharing

Architectural Knowledge

In this chapter we define desired properties for effective support for sharing architec-

tural knowledge. These properties were characterized based on an investigation of the

main characteristics of architecting, plus application of relevant knowledge manage-

ment best practices. We also highlight the design and implementation of a web portal

that conforms to all defined properties. This conformance makes the portal a good step

toward effective tool for sharing architectural knowledge.

8.1 Introduction

In the previous chapter we focused on typical organizational challenges in the architect-

ing process. Now that we have a better understanding on prerequisites for successful

architectural knowledge sharing, in this chapter we examine how tools can best be em-

ployed to facilitate architects in architectural knowledge sharing, and assess what kind

of knowledge sharing strategy fits the architecting process best. We thus take a more

solution-oriented stance towards sharing architectural knowledge, which fits well with

our planning stage of our action research cycle (see Fig. 6.2).

The need for sharing architectural knowledge was already observed during the first

case study conducted at RFA, as reported in Chapter 7. During that study we found

that architects rely heavily on communication to work adequately and to produce high-

quality results, and that many formal and informal discussions take place in the coffee

room, at the hallway, or during other social events or meetings. However, despite the

need for sharing architectural knowledge, software architects in practice often stick to

familiar technologies such as office suites for their daily tasks. Since such tools are not
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explicitly aimed at sharing architectural knowledge, most of this knowledge remains

implicit.

In this chapter we propose foundations for effective tool support for architectural

knowledge sharing. To this end, we define a set of properties architectural knowledge

sharing tools should have. These properties are derived by defining typical character-

istics of the architecting process, and by taking into account best practices from the

knowledge management domain. For the former, we combine our observations of soft-

ware architecture practice with a review of software architecture literature. For the

latter – because architecting is a knowledge-intensive process – we review knowledge

management literature.

Based on the set of desired properties, we asses the conformance of a number of

architectural knowledge sharing tools to these properties. The results indicate that not

all of these properties are adequately supported. In an attempt to improve the status

quo, we propose EAGLE: an architectural knowledge web portal. This portal offers

a hybrid architectural knowledge management approach and to indicate its potential

effectiveness, we show that it conforms to all aforementioned desired properties.

The remainder of this chapter is organized as follows. In §8.2 we describe our ob-

servations of architectural knowledge sharing during a second case study at RFA. In

§8.3 we combine these observations with a review on state-of-the-art software archi-

tecture literature in order to define the main characteristics of software architecting.

In §8.4 we elaborate on best practices known from knowledge management literature.

Based on these best practices, in §8.5 we define a set of desired properties of archi-

tectural knowledge sharing tools. In §8.6 we examine existing software architecture

tools and investigate how well these tools adhere to the defined properties. In §8.7 the

design and implementation of EAGLE is presented, which is an architectural knowl-

edge portal that implements all aforementioned properties. Finally, in §8.8 we present

our long-term vision on EAGLE’s application as blackboard system for architectural

knowledge sharing.

8.2 Architectural Knowledge Sharing in Practice

One can only understand what architects really need by asking them. This principle

motivated us to closely investigate the software architecture practice in our research on

architectural knowledge sharing tool support. This investigation helped to explain why

only few of the software architecture tools proposed by academics seem to really make

it to software architecture industry.

To improve our initial understanding of the architecting process built up by the first

case study, during our second case study at RFA, we closely monitored the architecting
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activities undertaken, the various roles architects have, their information needs, and the

tools they use for their daily tasks. This study fits well with the ‘action planning’ phase

of an action research cycle, since we diagnosed the architecting process of RFA further,

based on which we planned which improvements were possible.

In RFA software architectures play an important role. Architectural descriptions

are used as basis for development, and architectural guidelines need to be adhered to

during system development and maintenance. In most software development projects

architects work together in teams. One of the reasons for working in a team is that not

all architects are skilled in both business and technology related aspects, while in most

projects both these aspects play an important role. Consequently, there is a need to

communicate and share information – both among architects and other stakeholders.

Architects in RFA have acknowledged that it is often hard to share information in a

structured way. As a result, information sometimes gets lost when work is transferred

from one department to the other, leading to redundant work and a lower overall quality

of the architecture. Sharing relevant information is further constrained by deadline

pressures posed by most projects the architects work on. There is usually insufficient

time to explore all possibilities or alternatives, or to validate the results gained from

brainstorm sessions with colleagues or customers.

Below we elaborate upon our observations with respect to the three prominent ar-

chitectural knowledge sharing tools available in RFA: an expertise site, a knowledge

repository, and a knowledge maps system.

∙ Expertise site. For the architecture department of RFA an architecture expertise

website has been created. This site uses Microsoft Sharepoint as underlying

technology and offers functionality such as discussion forums, and news updates.

However, during our investigation we found that in its current form the expertise

site does not appeal to architects. Main reason for this lack of appeal is the fact

that there is very little content and only a small amount of people are registered

users. Furthermore, editing or adding information to the site is non-intuitive and

the relatively old information is difficult to retrieve. The expertise site is merely

used as a document repository where presentations and white papers are stored.

Architects indicated that they visit the expertise site only occasionally, and this

is partly due to its limited content, but also because they lack a real community

feeling in the architecting department in the first place.

∙ Knowledge repository. RFA has developed a knowledge repository that harbors

a set of guidelines used to guide an architect in creating an architecture. After

the architect answers a number of predefined questions, the repository uses its

guidelines to advise the architect about the architectural solution. Unfortunately,
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in practice this repository is hardly used by architects. During semi-structured

interviews with several architects the reasons for this problem became apparent:

the tool is highly prescriptive and the architects’ perception is that this limits the

freedom they have in devising a solution. Moreover, the guidelines stored in the

repository are outdated and the list of questions is rather large, and therefore time

consuming. For these reasons, instead of using the repository architects prefer to

edit existing architectural descriptions, since that yields results of similar quality

while saving time. Many architects indicated that they have tried out the repos-

itory once or twice, after which they concluded the added value of using it was

limited.

∙ Knowledge maps. RFA has also started an organization-wide initiative that aims

to connect knowledge and knowledge workers throughout the organization. This

intranet system is an information place where various information sources within

the organization are combined and presented to the user. Users are able to fill

in so-called knowledge maps that contain their areas of interest or expertise.

Knowledge maps should make it easy to find colleagues based on their exper-

tise. Unfortunately, the knowledge maps system is not that successful. The user

interface is non-intuitive and slow, and on certain areas of interest, such as soft-

ware architecture, no knowledge maps can be defined. For these reasons, the

knowledge maps system is considered rather useless by the architects.

An often heard complaint during the interviews held with the architects was that

there are too many systems that contain useful information. As a result, people often

decide to just ask a colleague directly, or stop looking at all, since they do not know

which system harbors what knowledge, and thus what is the right place to look. Ar-

chitects indicated that a more central location that acts as glue between existing tools

and that could be used as starting point for various knowledge-related tasks, would be

a much welcomed alternative for the current state of practice.

8.3 Characteristics of Architecting

Software architecting is a knowledge-intensive process in which many design decisions

are taken. These decisions are taken by carefully considering the available solutions,

after which the best alternative is chosen. Architects often apply proved solutions, such

as tactics or patterns, to guarantee a high-quality architectural design.

As described in §8.2, RFA is struggling with how to effectively use tools to share

architectural knowledge. The architectural knowledge sharing tools in place do not
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match the needs of the architects. To accommodate architects and other stakehold-

ers in their knowledge needs, effective architectural knowledge sharing tool support is

needed. Effective here means that the tools align to what architects in practice do, and

that the time and effort required for using the tools is limited.

In order to properly define properties of effective architectural knowledge sharing

tools, we investigate what a typical architecting process entails. In this section we use

software architecture literature to define five characteristics of the architecting process.

We do not claim that our set of characteristics is complete, but we believe that by focus-

ing on a broad set of literature we have covered the essential properties of architecting.

Please note that not all these properties are unique to architecting; some of them could

easily apply to other software engineering disciplines as well, such as detailed design

or testing. The lack of uniqueness and completeness notwithstanding, studying char-

acteristics of the architecting process allows us to define how architectural knowledge

sharing tool support could be designed more effectively.

∙ Architecting is consensus decision making. Architecting can be viewed as a

decision making process that not only seeks the agreement of most stakehold-

ers, but also resolves or mitigates the objections of the minority to achieve the

most agreeable solution (Eeles, 2006c). Often various stakeholders with differ-

ent needs and concerns are involved in the architecting process. This is acknowl-

edged by Bass et al. (2003), who present the Architecture Business Cycle to

define architecting as a feedback loop between architects, the stakeholders and

the architectural solution itself. Although the architects take the final design de-

cisions, they often do so in accordance with the other important stakeholders.

This decision making process lends itself for knowledge sharing initiatives that

allow stakeholders to actively participate in this process. Architectural knowl-

edge sharing tools should enable architects to efficiently work together in a team.

Due to the size and complexity of most software systems, it is often infeasible

for one architect to be responsible for everything alone. This focus on teamwork

is especially true in global software engineering environments. Consequently,

the ‘architect role’ is often fulfilled by multiple collaborating architects.

∙ Architecting is iterative in nature. Due to the consensus-driven decision mak-

ing characteristic, architectures are not designed overnight, but rather in an itera-

tive way. Hofmeister et al. (2007) illustrate this iterative nature of architecting by

the concept of a backlog that is implicitly or explicitly maintained by architects.

This backlog contains smaller needs, issues, problems they need to tackle and

ideas they might want to use. Such a backlog drives the workflow, helping the

architect determine what to do or decide next. Conceptually the architecture is
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finished when this backlog is empty. However, as long as the backlog has open

issues it is worth relating these issues to the current state of the architecture de-

sign. Architects can then judge how these issues could best be addressed while

maintaining the important qualities of the architectural design. Architectural

knowledge sharing tools therefore should support traceability between knowl-

edge entities, such as architectural decisions and identified problems.

∙ Architecting is a creative activity. Architects are responsible for reflecting the

design decisions taken in comprehensive architectural models, by selecting the

most suitable views and viewpoints or architecture description language. During

these activities the creativity of the architect plays a crucial role (Eeles, 2006a).

This is particularly true when dealing with novel and unprecedented systems.

In such cases, there may be no codified experience to draw upon. Knowledge

sharing tools need to take this characteristic into account and should support the

architect’s creativity instead of constraining it. This means that methods and

tools probably work better if they are more descriptive in nature.

∙ Architecting impacts the complete life-cycle. Many architects would agree on

the statement that an architecture is never finished, but rather stays alive through-

out the life of the software system. During maintenance and system evolution

an architecture plays an important role in safeguarding architectural qualities.

If relevant architectural knowledge is not stored correctly knowledge vaporiza-

tion may be the result, turning an architecture into a black box (Bosch, 2004).

Knowledge sharing tools should therefore make available important architectural

knowledge to various stakeholders, such as developers and maintainers, instead

of only targeting the architects.

∙ Architecting is constrained by time. The previous characteristics of architect-

ing show that architecting is a creative consensus-driven and iterative decision

making process. In practice, however, a heavy constraint on these character-

istics is the available time that architects have. Often, ‘time to market’ forces

architects to choose for suboptimal solutions. This phenomenon was one of the

conclusions of a recent workshop about sharing and reusing architectural knowl-

edge: “in practice, architects find only one solution and not multiple alternatives

to choose from” (Lago and Avgeriou, 2006). This is due to the hard constraints in

industrial practice (e.g., time to market or budget) that forces architects to intu-

itively come up with a single solution based on their existing application-generic

knowledge. In effect, this results in the architects not exploring the solution

space and potentially missing alternative solutions.
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8.4 What to Learn from Knowledge Management?

The recent emphasis on architectural knowledge has sparked discussions on how to

capture and manage such knowledge, such as the know-why and know-how of archi-

tectural solutions, in an appropriate way. To answer this question, software architec-

ture researchers benefit from best practices (such as methods and tools, methods) of the

knowledge management domain, such as reported in (Lindvall et al., 2001).

The characteristics of architecting described in the previous section show that ar-

chitecting is a creative, iterative decision making process often done in collaboration

with colleagues and other stakeholders in the lifecycle. The fact that architects only

have a limited amount of time to complete this decision making process further shows

the need for effective architectural knowledge sharing support. In this section we elab-

orate on best practices for knowledge sharing based on a critical analysis of knowl-

edge management literature. Based on this literature analysis we investigate how the

architecture domain could learn from this established field. Please note that in this

chapter we restrict ourselves to knowledge sharing factors related to tool support. Var-

ious social (Kankanhalli et al., 2005), organizational and cultural (Cummings, 2003),

or personal factors (Nonaka and Takeuchi, 1995), also heavily influence the success of

knowledge sharing, but are not explored in this study. For a discussion on how to create

incentives for sharing architectural knowledge, we refer to Chapter 7.

Knowledge in software engineering is diverse and its proportion immense and stea-

dily growing. Improved use of this knowledge is the basic motivation and driver for

knowledge sharing in software engineering (Rus and Lindvall, 2002). Only since the

early nineties have the knowledge management and software engineering communities

begun to grow together (Aurum et al., 2003). Since then, various knowledge shar-

ing tools have been proposed in the software engineering domain, leading to con-

cepts such as the Experience Factory (Basili et al., 1994), experience management

systems (Seaman et al., 2003), learning software organizations (Althoff et al., 2000),

and Software Engineering Decision Support (Ruhe, 2002). In addition, considerable

attention has been paid to the concept of design rationale (Dutoit et al., 2006), and var-

ious approaches based on this concept have been proposed, such as IBIS (Conklin and

Burgess-Yakemovic, 1991) and QOC (MacLean et al., 1996).

Literature warns that not all knowledge sharing implementations are automatically

successful. Ghosh (2004) lists several factors that make knowledge sharing difficult,

such as the fact that knowledge sharing is time consuming, and that people might not

trust the knowledge management system. Another warning given is that striving for

completeness is infeasible. Lakshminarayanan et al. (2006) argue that it is impossible

to create a tool to reason about all the issues that an architect would normally need
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to consider. In addition, we should be aware of the fact that a lot of the available

knowledge cannot be made explicit at all, but instead remains tacit in the minds of peo-

ple (Nonaka and Takeuchi, 1995). Sharing such tacit knowledge is very hard (Haldin-

Herrgard, 2000). The potential limitations of knowledge sharing notwithstanding, we

believe it is crucial to assist architects in practice with their daily work. Tools should

assist architects in their knowledge-intensive tasks, by enabling them to discover, share,

and manage architectural knowledge.

In order to design successful tools for knowledge sharing, a strategy needs to be

chosen. Hansen et al. (1999) distinguish two main knowledge management strategies:

codification and personalization. Whereas codification is aimed at systematically stor-

ing knowledge so that it becomes available to people in the company, the personaliza-

tion strategy focuses on storing information about knowledge sources, so that people

know who knows what. In the architecting process, some architectural knowledge

might benefit from a codification strategy, whereas other types of knowledge could

be better shared using personalization approaches. A hybrid approach, first coined

by Desouza et al. (2006), is therefore worth considering (cf. Chapter 3, §3.4). Such a

hybrid approach provides a balance between formalized and unstructured knowledge.

According to Hall (2001), such a balance is an important prerequisite to stimulate the

usage of tools.

To define in more detail how a hybrid architectural knowledge sharing approach

should look like we can draw on a study about knowledge sharing by van den Brink

(2003). He describes that four steps need to be executed in order to create “an in-

terconnected environment supporting communication, collaboration, and information

sharing within and among office and non-office work activities; with office systems,

groupware, and intranets providing the bonding glue”. Firstly, information and explicit

knowledge components must be stored online, indexed and mapped, so people can

see what is available and can find it (e.g., using digitally stored documents or yellow

pages). Secondly, communication among people needs to be supported, by assisting

in the use of best practices to guide future behavior and enable sharing of ideas (e.g.,

emails, bulletin boards, or discussion databases). Thirdly, tacit knowledge needs to be

captured using for instance communities of practice, interest groups, or competency

centers (e.g., groupware and electronic whiteboards). Lastly, methods are required that

offer a virtual space in which a team can collaborate interactively, irrespective of geo-

graphic distribution of the team members or time. To enable the four steps described

above, van den Brink (2003) defines three categories that form technological enablers

for knowledge sharing: knowledge repository (for sharing explicit knowledge); knowl-

edge routemap (for sharing explicit and tacit knowledge), and collaborative platforms

(for sharing tacit knowledge).

The need for a combined approach that stimulates the collaboration of architects
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and that supports sharing both tacit and explicit knowledge, is also acknowledged by

Röll (2004). He describes seven knowledge work processes that range from finding

codified information to establishing social networks and collaborating in communities.

The author states that these knowledge processes can not be seen independently, but

often are interrelated. For example, an architect searching for information on security

might a) initiate a search on this specific topic, b) negotiate with colleagues about the

meaning of what was just found, c) create new ideas based on the discussions and by

using common sense, and d) try to maintain a social bond with these colleagues at the

same time.

Based on the above, we argue that architectural knowledge sharing tools can best

follow a hybrid approach that combines codification and personalization methods, and

that also stimulates collaboration between the stakeholders of the architecting process.

More stable knowledge – such as best practices and architectural tactics – could be

codified in a repository, less formalized knowledge could be spread in the organiza-

tion more effectively using knowledge routemaps, and a collaborative platform allows

architects and other stakeholders to work together on an iterative decision making pro-

cess.

8.5 Desired Properties of Architectural Knowledge

Sharing Tools

Based on the five characteristics of software architecting (§8.3) and best practices from

knowledge management literature (§8.4) we define seven desired properties of archi-

tectural knowledge sharing tool support.

1. Stakeholder-specific content Because Architecting impacts the complete life-

cycle various stakeholders are involved in the decision making process, and all

these stakeholders need specialized views on the available content, such as open

issues, approved decisions, or scheduled meetings. Architectural knowledge

sharing tools should make it possible to distinguish between certain types of

knowledge. Users of the tool can then choose what architectural knowledge they

want to retrieve. The search functions should therefore match with the profiles of

different users, such as developers, maintainers, architects, or project managers.

2. Easy manipulation of content Since Architecting is iterative in nature, archi-

tects follow a continuous iterative decision making process. Easy manipulation

of content will keep the decision making process up to speed, whereas more rigid

tool support that does not allow easy manipulation could instead slow it down.
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3. Descriptive in nature Because Architecting is an art, architects should not be

constrained too much in their tasks. Tools that support architectural knowledge

sharing should not prescribe how architects should use those tools, for example

by offering an abundance of predefined models, guidelines, or templates. Instead

the tools should allow a descriptive perspective on the available architectural

knowledge that does not limit the architects’ creativity.

4. Support for architectural knowledge codification Since Architecting is con-

strained by time, architects could be helped by quickly finding relevant architec-

tural knowledge. For certain types of knowledge that is not subject to frequent

changes, a codification strategy probably works best. Architects can then easily

retrieve solutions that have proven themselves in the past, and reuse these solu-

tions accordingly. This property also relates to the knowledge repository cate-

gory of van den Brink (2003), and the statement of Hall (2001) that there should

be a proper balance between formalized (i.e., codified) and less structured (i.e.,

personalized) knowledge.

5. Support for architectural knowledge personalization Because Architecting is

consensus decision making, architectural knowledge is not always immediately

‘stable’ enough to codify, because until consensus has been reached, decisions

could change. For such knowledge, a personalization strategy could prove use-

ful to enable architects to find who knows what, in a similar way as the knowl-

edge routemaps proposed by van den Brink (2003). Personalization techniques

are also valuable to support the discussions and negotiations between stakehold-

ers (Röll, 2004).

6. Support for collaboration Because Architecting is consensus decision-making

architectural knowledge tool support should explicitly support collaboration be-

tween different users. This property relates to the groupware criterion proposed

by van den Brink (2003), as well as to the collaboration requirement of Röll

(2004). This property enables architects to actively involve all important stake-

holders in the decision making process. Since most architects are specialized in

certain areas, tool support that supports collaboration also allows architects to

use a ‘divide and conquer’ approach whenever possible.

7. Sticky in nature. This property could be seen as orthogonal to the others in

the sense that it is an essential property to motivate people to start using an ar-

chitectural knowledge sharing tool in the first place. With this we mean that

people should be motivated to start using the tool, as elaborated upon by Boer

et al. (2002), who describe several motivational factors. In addition, Hall (2001)
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argues that the user interface should be attractive and user friendly to stimulate

usage of the tool. To prevent users from neglecting the tool after having played

with it once, according to Bush and Tiwana (2005) special features should be

incorporated in the tool to let it obtain a certain level of ‘stickiness’. Tools that

are sticky motivate users to keep coming back to it, increasing the chance of

widespread adoption in practice.

8.6 The Status Quo of Architectural Knowledge

Sharing Tools

Based on the seven identified desired properties of architectural knowledge sharing

tools, in this section we assess the status quo of tool support in the software architecture

domain. We have selected a set of tools that represent the current state of the art in

architectural knowledge management tools, since all these tools have recently been

introduced in software architecture literature and they all explicitly target architectural

knowledge management as well.

The academic tools that are assessed include Archium, ADDSS, DGA DDR, and

PAKME. Archium is a tool environment proposed by Jansen et al. (2007) that is aimed

at establishing and maintaining traceability between design decision models and the

software architecture design. Capilla et al. (2006) have proposed a web-based tool

called ADDSS for recording and managing architectural design decisions. Falessi

et al. (2006) have devised a specific design decision rationale documentation tech-

nique, which is driven by the decision goals and design alternatives available. Hence,

it is called the Decision Goal and Alternatives (DGA) DDR technique. Ali Babar et al.

(2005) have proposed a Process-based Architecture Knowledge Management Environ-

ment (PAKME) that allows storing generic architectural knowledge (such as general

scenarios, patterns, and quality attributes), and project specific architecture knowledge

(such as concrete scenarios, contextualized patterns, and quality factors). To form a

balanced set of tools from academia and practice, we add to our assessment RFA’s

three architectural knowledge sharing tools: the knowledge repository, expertise site

and knowledge maps system. More details on these three tools are described in §8.2.

The results of the assessment are reflected in Table 8.1. For the assessment of

the tools of RFA we were able to draw on our observations in this organization. For

the assessment of the academic tools we used published literature about the tools as

primary source of information. We have based the scores on our interpretation of the

tools, but acknowledge that it is possible that the tools have evolved recently. Please

note that we do not intend to give a strict judgment on the tools, but rather indicate
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Table 8.1: Status quo of architectural knowledge sharing tools
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Archium  -   +  +  +  -  -  ? 

ADDSS  -   -  +  +  -  -  ? 

DGA DDR  -   -  +  +  -  -  ? 

PAKME  -   +  +  +  -  +  ? 

PGR knowledge repository  -   -   -  +  -  -  - 

PGR expertise site - + + + - - -

PGR knowledge maps - - + - + - -

whether they conform to the defined properties. If they do, this is reflected in Table 8.1

with a ‘+’ score; if they do not, this has resulted in a ‘-’ score.

Stakeholder-specific content is a property that we haven’t found explicit support

for in any of the studied tools. Archium is designed for a single user who could use

the tool to establish and maintain traceability between design decision models and

the software architecture design. The authors of ADDSS mention multi-perspective

support as one of the envisioned features of ADDSS, but in the current prototype this is

not yet implemented. DGA DDR and PAKME also do not mention stakeholder-specific

content as a feature, but rather focus on the codification of the architectural knowledge

in general. The same goes for RFA’s knowledge repository, and the expertise site,

although the latter allows users to find a lot of different types of information, but this

information is not tailored to users. RFA’s knowledge maps system is suffering from the

same limitation since users can find experts on certain topics based on the knowledge

maps, but the view they are able to obtain on this information is not customizable.

Easy manipulation of content is incorporated in three of the tools we studied. The

language used in Archium offers explicit support for addition and modification of ar-

chitectural design decisions. In PAKME, a maintenance component provides various
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features to modify, delete and instantiate different artifacts. This component also in-

cludes repository administration functions. RFA’s expertise site in theory allows vari-

ous stakeholders to change or update knowledge at a regular basis, although architects

indicated that such changes are not always “easy” to make. In RFA’s repository and

knowledge maps system modifying content is non-intuitive and time-consuming, re-

sulting in a negative score for this property. With both DGA DDR and ADDSS we

believe the underlying model used in these tools is rather formal and limited in scope.

As a result, chances are that architects feel too constrained by having to comply to these

models. An issue specific to ADDSS is that architecting is not assumed to be iterative.

This focus becomes apparent in ADDSS because the user can add the design decisions

taken and then add a view to these decisions to gain traceability. However, changing

the design decisions is only possible by starting a new iteration, and if this is done a

new view also has to be included to prevent loss of traceability. Between iterations no

connections are possible, so manipulating existing architectural knowledge is hard.

Descriptive in nature is something most tools in our investigation are, except RFA’s

repository that strongly prescribes the solution based on the questions that need to

be filled in. This is related to the fact that most of the tools also score well on the

support for AK codification property. Most tools follow a typical codification strategy.

Users are able to add information to the tool that is then stored for future retrieval.

The one exception to this approach is RFA’s knowledge maps systems, which offers

a mechanism for people in the organization to find each other. This support for AK

personalization is unfortunately not well covered by all other tools. A related critique

on the tools studied is that they also score low on explicit collaboration aspects, since

they are built around the assumption that architects mainly codify information for reuse

purposes. Although RFA’s knowledge maps system allows experts to find each other, it

does not offer structured means to let these experts collaborate. As a result most of the

investigated tools get a ‘-’ score on the support for collaboration property. The single

exception is PAKME, which is built on top of an open source groupware platform to

provide collaboration using content management, project management and the like.

To conclude our assessment, we have investigated whether the various tools are

sticky in nature. To properly determine this for ADDSS, DGA DDR, Archium and

PAKME, hands on experience is required, hence the question marks in Table 8.1. For

the other three tools, we can assess the stickiness based on the interviews we held with

architects of RFA. The results of these interviews indicate that none of the three archi-

tectural knowledge sharing tools in RFA is sticky, since users are not motivated to keep

using the tools: the knowledge repository is outdated and offers little added value; the

expertise site is not flexible in adding, manipulating or retrieving architectural knowl-

edge; the knowledge maps are very rigid and do not offer specific topics on software

architecture, rendering this system useless for the architects.
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In summary, we conclude that most of the architectural knowledge sharing tools

we studied are descriptive in nature and focus primarily on codification. To improve

the status quo, more emphasis should be put on stakeholder-specific content, support

for personalization, explicit support for collaboration, and general characteristics that

make tools appealing and sticky in the long run.

8.7 EAGLE: Effective Tool Support for Sharing

Architectural Knowledge

In our effort to arrive at effective tool support for sharing architectural knowledge,

we have designed and implemented an architectural knowledge portal that acts as an

Environment for Architects to Gain and Leverage Expertise (EAGLE). A first prototype

of EAGLE has been subject to a pilot in the architecture department of RFA. During

the trials the architects were enthusiastic about EAGLE’s potential. More extensive

experimentation of EAGLE is part of a next case study, elaborated upon in Chapter 9.

In the following subsections we will respectively discuss in depth the architecture

design of EAGLE, its graphical user interface, the main architectural knowledge mod-

ules it contains, and our long-term vision on the potential of this portal. EAGLE is

designed to incorporate all seven desired properties introduced in §8.5, so that it is an

effective means to support architectural knowledge sharing. To propose evidence to

this claim, wherever appropriate, the characteristics and features of EAGLE are linked

to these properties using italic text. An overview of the desired properties and how

these are addressed by EAGLE is provided in Table 8.2.

8.7.1 Architectural design

The central vision behind EAGLE was to create an integrated environment that allows

architectural knowledge sharing in various ways. In addition, we aimed at providing

stakeholder-specific content. A frequently occurring mistake in organizations is that

they provide all employees with the same content. We believe that architects would like

to have more flexibility, so that they can manage exactly the architectural knowledge

they need.

Heavily driven by the integration and flexibility requirements, we have chosen a

web based portal as our underlying framework to build EAGLE. The advantage of web

based over standalone applications is that a large group of users can be reached, while

the maintenance of the application can be performed centrally. Advantages of portals

over ‘normal’ websites include that a portal acts as one single access point to various
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Table 8.2: Desired properties addressed by EAGLE
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EAGLE

Graphical User Interface     

Notifications & subscriptions  

Best practices repository  

Document repository  

Yellow pages   

Discussion boards   

Project environments    

Blogs  

functionality, provides easy access to internal and external information sources, and

that it offers a personal, adaptable environment. A portal is therefore the ideal means

to turn EAGLE in aforementioned integrated environment for architectural knowledge

sharing. The architectural design of EAGLE is depicted in Fig. 8.1.

EAGLE is a client-server application. At the server side an Apache Webserver

communicates with a MySQL database in which all architectural knowledge is stored.

The database uses a specific datamodel to capture various architectural knowledge en-

tities, such as design decisions, concerns, and rationale. Various PHP scripts reside at

the web server to operate on this knowledge. For each of the architectural knowledge

modules one or more PHP scripts are created to handle client requests on the one hand,

and to communicate with the database on the other hand.

For the client side of EAGLE, we selected a suitable open source framework: Porta-

neo, a Rich Internet Application.1 Portaneo is highly modifiable, has a flexible plugin

system – making EAGLE highly extensible – and, above all, is free. These charac-

teristics made it a better choice than existing commercial software such as Microsoft

Sharepoint2, because with Portaneo we are able to experiment more easily with the por-

tal, while using a minimum of resources. Moreover, we felt that building a portal from

1http://www.portaneo.com/solutions/en/
2http://www.microsoft.com/sharepoint/default.mspx
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Figure 8.1: Architecture of EAGLE

scratch using open source enabled us to tailor the portal towards specific architectural

knowledge sharing functionality as much as possible. A last reason to opt for Portaneo

is its relatively large user community and the fact a standard is used for content man-

agement. As a result, various modules available on the Internet can be incorporated in

the portal3.

The client browser contains the portal functionality organized in several tabs and

menus on a web page. All tabs and menus communicate directly with the architectural

knowledge modules that reside on the web server. A more detailed discussion on the

functionality of the various modules can be found in §8.7.3 The current version of

EAGLE is optimized for use with Internet Explorer, but other web browsers can be

used as well.

Communication between the web browser and web server takes place using the

standard HTTP protocol. However, instead of using a traditional web application model

where the browser itself is responsible for initiating requests to, and processing requests

from, the web server, we use asynchronous Javascript and XML – also known as Ajax

– to act as an intermediate layer to handle communication requests (Zakas et al., 2006).

This communication layer, that is depicted on the right side of the client browser in

Fig. 8.1, is really just a JavaScript object or function that is called whenever information

needs to be requested from the server. Instead of the traditional model of providing a

link to another resource (such as another web page), each link makes a call to the

communication layer, which schedules and executes the request. This request is done

asynchronously, which means that code execution does not wait for a response before

continuing. When the communication layer receives the server response, it goes into

3See http://www.google.com/ig/directory?synd=open for the list of available modules.
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action, often parsing the data and making several changes to the user interface based

on the information provided.

Asynchronous communication involves transferring much less information than a

traditional web application model. Consequently, user interface updates are faster, so

that users are able to do their work more efficiently. Moreover, it looks more profes-

sional when only those parts of a web page are updated that are actually used at that

moment. For these reasons EAGLE mostly uses asynchronous communication. Syn-

chronous communication is only used when the portal is start up for the first time –

which means that the whole page has to be loaded by the browser – or for operations

such as file transfers.

8.7.2 Graphical user interface

As already pointed out in the previous section, EAGLE is a highly modularized portal.

This property is reflected in the graphical user interface. Users are able to select a num-

ber of ‘GUI modules’ that are organized in their browser screen. There are two types of

GUI modules: 1) small modules containing little information of which several appear

on one page, and 2) page-wide modules which are denoted as tabs. A personalized

portal therefore consists of multiple tabs, each of which contains one of the listed type

of modules.

Due to the flexibility users have in organizing their view on the existing content,

and the fact that various types of architectural knowledge are distinguished in the un-

derlying datamodel, EAGLE scores well on the stakeholder-specific content property.

Due to the module standard used, users can also import functionality from the Inter-

net, apart from choosing among the main architectural knowledge modules (which are

elaborated upon in the next section).

EAGLE does not pose restrictions on how it should be used. It primarily acts as a

gateway to various types of architectural knowledge, both in codified and personalized

forms. As described in §8.2 this integration aspect was one of the features architects

of RFA would greatly appreciate. Because no restrictions are put on its use, EAGLE

conforms to the highly descriptive in nature property.

Fig. 8.2 depicts a screenshot of the start page of EAGLE. In this screenshot afore-

mentioned modules are organized in a number of tabs (on the top of the screen), as

well as in a number of main blocks in the center of the screen. The tabs give access

to the various architectural knowledge modules described in §8.7.3. The blocks in the

center of the start page give access to additional useful knowledge sources. These are

typical knowledge sources that architects at RFA – and arguably users in general –

request on a regular basis, such as the weather report, a search bar, and a calender.

The fact that EAGLE integrates architectural knowledge sharing features with these
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Figure 8.2: EAGLE’s start page

sources, further adds to EAGLE’s attractiveness, because it combines access to vari-

ous knowledge, both work-related and private needs. Hence, we argue that EAGLE

is rather sticky in nature, thereby conforming to this property as well. Furthermore,

editing architectural knowledge in all of EAGLE’s modules is easy due to the intuitive

user interface, ensuring easy manipulation of content.

8.7.3 Architectural knowledge modules

In this section we will elaborate upon the key modules of the architectural knowledge

portal, most of which are currently implemented in a working prototype. Before we

discuss the various modules themselves, we first pay attention to an overarching trait

of EAGLE, which is the support for notifications and subscriptions.

The implemented subscription mechanisms allow people to subscribe to specific

architectural knowledge in discussion forums, but also to non-architectural news such

as the news headlines or the weather report. In the right side of Fig. 8.2 this is visu-

alized: here the user has subscribed to the BBC news website using RSS feeds. RSS

feeds are employed to push relevant architectural knowledge to certain stakeholders, or

to notify subscribed stakeholders if new architectural knowledge emerges. RSS feeds
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are complementary to the more traditional pull mechanism of using the best practices

database. Users can subscribe to certain topics of interest and get updated without

having to search the portal themselves, which is a lightweight approach to share archi-

tectural knowledge among relevant stakeholders.

The notifications are all shown in a comprehensive way in one of the panes of the

portal’s start page; in Fig. 8.2 the notification pane is found in the top left part of the

page. Two types of notifications are supported in the current version of the portal: 1)

checking the expiration dates of documents, and 2) informing users of contributions of

discussion topics on which they have subscribed to. Since the first service performs

an action that is not initiated by a user, the portal executes a script every night which

checks the expiration date of documents and adds notification records in case of expired

documents. For the second service, users need to be subscribed to discussion topics.

The subscription and notification mechanisms ensure that users can decide what

information is displayed to them and in what way. Furthermore, a big advantage of

notifications is that users are triggered to regularly check whether there is new infor-

mation for them, thereby further increasing the stickiness of the portal.

Best practices repository

To store best practices or other reusable assets, the portal contains a best practices

repository. This repository is one of the architectural knowledge modules that explicitly

supports architectural knowledge codification. Architectural knowledge is codified in

predefined formats, and could be retrieved for various purposes, such as reusing past

design decisions, or to find out what guidelines exist on a certain topic.

The main contribution of the best practices repository is that it supports the decision

making process of architects. Architects can fill in questions to specific architectural

knowledge topics, after which the tool offers a number of alternative solutions. Without

posing too much restrictions, the tool thus offers insights in the design space, which is

especially useful for the less experienced architects.

Document repository

Documentation is stored in EAGLE’s document repository. Although primarily in-

tended for documents containing architectural knowledge, it is also possible to store all

kinds of additional useful material, such as budget plans, memos, or corporate guide-

lines. As a result, similar to the best practice repository this module offers explicit

support for architectural knowledge codification.

At first sight the document repository is not that different from existing content

management systems. Two main features, however, distinguish it from the more stan-
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dard systems. Firstly, an underlying category model enables classification of docu-

ments in various architectural knowledge categories. The implemented search function,

allows searching documents by selecting on or more categories. Secondly, it is possi-

ble to assign an expiration date to documents. When the expiration date is reached, the

owner of the document is signaled using the notification system discussed before, after

which he needs to either update the document or delete it. This feature prevents that

outdated documents reside in the repository, so that the overview and management of

important documents is improved.

Please note that this module of the portal is not specific to architectural knowl-

edge in the sense that it does not (yet) contain searching within documents. Neverthe-

less, architects – and other related stakeholders such as managers – can benefit from a

proper way of organizing documentation, since the amount of documentation usually

produced in the architecting process is rather large.

Yellow pages

EAGLE allows architects to quickly find information about each other using the yellow

pages module. Architects can obtain an overview of all other portal users. By selecting

the name, a more detailed information page is shown with the credentials and contact

information of that person. Also detailed architectural knowledge, such as the expertise

areas of the user, and which projects and activities he is assigned to, is accessible

through the yellow pages. This allows retrieving ‘who is doing what’, and ‘who is

knowing what’, both of which are valuable information for architects.

The yellow pages system is a good example of support for architectural knowledge

personalization, because the actual architectural knowledge itself is not presented, but

it is indicated who possesses the knowledge. This functionality thus allows users to

easily find colleagues based on experience, interests or projects on which they work,

after which these colleagues could be contacted by sending them a message using the

portal, or more traditionally by simply calling or emailing them.

By connecting people in the architecting process, we increase ‘team building’ in

the organization, and foster discussions that can result in higher quality solutions. This

approach also conforms to the sticky in nature property, because people like to share

their ideas more easily if they have a ‘group feeling’, and creating such an environment

ensures a certain degree of stickiness.

Discussion boards

The functionality offered by EAGLE’s discussion boards is rather straightforward. It

provides support for collaboration between people that are otherwise disconnected (for
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Figure 8.3: Project environments: documentation, discussions, and yellow pages

example due to physical distance) and it offers a lightweight way to discuss ideas or

to share experience. An intriguing feature, however, is that if a user has subscribed

himself to a discussion forum, as soon as somebody posts a message in a discussion

topic, a notification is sent to him. This tracking mechanism allows keeping up-to-date

on the progress and issues of activities and tasks users are involved with.

As an additional feature, depending on how many posts a users makes on a forum,

his status is changed. As a result, heavy users of the discussion forums are rewarded

by a higher status, which is depicted as avatar below their name. Such support for

reputation tracking appeals to users and motivates them to keep using the portal, hence

increasing its stickiness (Bush and Tiwana, 2005).

Project environments

EAGLE offers the architects the opportunity to organize their work on a per project

basis in so called project environments. Essentially, a project environment combines

functionality offered by three other architectural knowledge modules: document man-

agement, discussion boards, and yellow pages. This combination is clearly visible in

Fig. 8.3 where at the left side information regarding the associated project stakeholders
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can be found (yellow pages), in the center the project documents are listed (document

repository), and at the bottom the projects’ discussions are shown (discussion board).

An added benefit of this integrated functionality is that it supports codification (docu-

ment management), personalization (yellow pages), and also collaboration (discussion

board). To ensure that classified project information is contained, administrators of

EAGLE can use access control structures to only allow specific stakeholders to access

certain project environments.

Blogs

Blogs are employed to allow designers and architects to easily communicate and col-

laborate. As a result, other stakeholders can quickly acquire information about the

current status of the project, such as the design decisions that have been made, alter-

natives that have been considered, etc. One important motivation for people to blog is

the ability to create a community feeling (Nardi et al., 2004). To foster communica-

tion between architects, and to motivate them to share architectural knowledge, such a

community feeling is essential. This may also further stimulate collaboration.

8.8 Vision: Towards a Blackboard System

In the previous sections we have elaborated upon EAGLE’s key architectural knowl-

edge modules. Our long-term goal is, apart from improving these modules, to turn

EAGLE into a typical blackboard system. A blackboard system is a common approach

to assist problem solvers in cooperation and communication (Englemore and Morgan,

1988). With various background services – called ‘knowledge sources’ in the Black-

board paradigm – architects can be supported in decision-making, architectural knowl-

edge retrieval, etc. Since the current design of EAGLE already uses a central database

where all architectural knowledge is stored, the foundations for such a blackboard sys-

tem are already met. Features to further improve architectural knowledge sharing can

be defined on top of this basic infrastructure. One of these features is that of text min-

ing, see for example (Fan et al., 2006). Text mining support can be utilized to enrich

unstructured architectural knowledge present in EAGLE.

To visualize how different services can collectively operate on the global database

(i.e., the blackboard), consider the following hypothetical scenario that illustrates the

interplay between the blog, RSS feeds, and a (future) text mining service, which is also

depicted in Fig. 8.4.

A developer and architect who both work on project X have a discussion about

how to best implement a public key infrastructure and they discuss various alternative
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Figure 8.4: Interplay of architectural knowledge sharing services

solutions. Since they reside at different locations, they use a blog for their discussion.

The blog, being one of EAGLE’s architectural knowledge modules, integrally stores

the discussion. This unstructured information is not very meaningful to stakeholders

who are not directly involved in the discussion, but a structured summary is valuable to

the lead architect of the project, since in our example he is ultimately responsible for the

architecture design in Project X, including security. To this end, a text mining service,

also part of EAGLE, opportunistically analyzes the blog discussion and determines that

a decision on security has been made. Consequently, a summary of this architectural

knowledge is sent to the lead architect using a RSS feed. Although the lead architect

is unaware of the blog discussion that has taken place, he is able to determine whether

the decision made by the architect and developer is the correct one. If this is not the

case, he could intervene in time, preventing possible security problems later on in the

project.

We strive to gradually develop EAGLE as an integrated portal that supports the

community feeling between stakeholders in the architecting process. A survey carried

out by Clerc et al. (2007a) indicated that architects consider themselves a middleman

between various stakeholders such as business management and the customer on the

one side, and technical oriented developers and stakeholders on the other side. EAGLE

puts the architects centrally in the architecting process, by offering easy access to all

kinds of codified and personalized architectural knowledge. The support for collabo-

ration, the stakeholder-specific content, the easy manipulation of content, and the fact

that EAGLE is both descriptive and sticky, further add to the effectiveness of this tool.
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To arrive at an integrated environment, we should also explore the options for how we

can further integrate EAGLE with existing tools that architects use in the architecting

process, such as office tools or modeling tools. Architects can then use this integrated

environment for all their daily tasks, which further motivates them to use the portal.

8.9 Conclusions

Software architecting is a knowledge intensive process. Consequently, tool support for

architectural knowledge sharing has various benefits, such as reusing best practices,

teaching staff, and support efficient collaboration between stakeholders. However, our

observations in software architecture practice show that architects often stick to tradi-

tional tools, such as office suites, for their daily work, thereby missing the opportunity

to effectively share architectural knowledge.

In this chapter we have defined seven properties that architectural knowledge shar-

ing tools should have to be effective. This directly answers research question RQ-II.6.

These properties have been defined by drawing on experience and literature in both the

software architecture and knowledge management domain. By viewing software archi-

tecture from a knowledge management perspective we were able to determine which

best practices from this field apply to the architecting process. Although the identified

properties are essential from an architectural knowledge management perspective, it

should be noted that some of these properties might to a certain extent apply to other

Software Engineering disciplines as well.

Based on the properties, we have assessed a number of existing software architec-

ture tools. The results of this assessment indicate that the status quo of architectural

knowledge sharing tool support lacks full conformance to the seven desired properties.

To improve the status quo, we have presented the design and implementation of

EAGLE, an architectural knowledge portal. This portal offers a hybrid architectural

knowledge management approach and supports collaboration between stakeholders in

the architecting process. To this end, it incorporates lightweight features using state-

of-the-art techniques, such as blogs, RSS feeds and text mining. We have shown that

our portal conforms to all identified properties, thereby increasing the chance for suc-

cessful widespread adoption in software architecture practice. Because of EAGLE’s

conformance to all seven desired properties of architectural knowledge sharing tools,

we argue that it is a better alternative compared to the tools discussed in §8.6, and a

good step towards effective tool support for sharing architectural knowledge.

Our next step is on assessing the contribution of the prototype of the portal in

practice. To this end, as part of the next case study at RFA we will ask a rather large

group of architects to experiment with EAGLE and report their experiences.
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Just-in-Time Support for Architects

In this chapter we extend our search for effective tool support by examining the in-

tended, actual, and desired approach to sharing architectural knowledge according to

architects at RFA. This study indicates that architects are best supported by an inte-

grated tool environment that supports Just-in-Time architectural knowledge. Since EA-

GLE, our web portal, seems to conform well to these requirements, we experimented

with it at RFA to further assess its practical value.

9.1 Introduction

Observations in Chapter 8 showed that architects in industry have yet to meet a tool

environment that matches their knowledge needs. The main problem seemed to be a

misalignment between the knowledge managed by these tools and what architects in

practice really need for their daily tasks, which could be due to the specialized nature of

these tools. In this chapter, we report on a third case study at RFA in which we delved

further into this problem and gained understanding on how to overcome it. To this

end, we assessed the architects’ satisfaction with existing tools that support knowledge

sharing in this organization, followed by the identification of their requirements for an

improved tool environment.

In this third case study we focused on respectively the intended approaches to shar-

ing architectural knowledge at RFA, the actual way this is done, and the desired situa-

tion according to the architects. We found that architects are not particularly concerned

with specialized architectural knowledge reflected in meta-models, templates or pro-

cess guidelines. Instead, they seemed primarily interested in support for ‘Just-in-Time

(JIT) architectural knowledge’, which we define as access to and delivery of the right

architectural knowledge, to the right person, at any given point in time. Such archi-
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tectural knowledge may include updates on major decisions made or discussions held,

but also contact information or expertise of important stakeholders. Since architect-

ing is such a knowledge-intensive decision-making process, Just-in-Time architectural

knowledge is vitally important for architects to ensure high-quality results.

The preference for Just-in-Time architectural knowledge seemed to match the func-

tionality offered by EAGLE, the web portal we introduced in Chapter 8. To assess the

practical value of EAGLE, we experimented with it and evaluated whether it could

deliver Just-in-Time support to architects. This study therefore aligns well to typical

action taking and evaluation phases of our action research cycle discussed in Chapter 6.

Our experimentation indicated that EAGLE’s integrated functionality supports ar-

chitects in their decision making process, by providing easy access to the right archi-

tectural knowledge at any given point in time. Experimentation with our portal also

indicated that it is a definite improvement over existing tools at RFA.

The remainder of this chapter is organized as follows. In §9.2, we argue why Just-

in-Time architectural knowledge is important. In §9.3, we outline the research design of

this case study, which consisted of a problem-oriended and solution-oriented part. The

results of the former part, in which we identify requirements for architectural knowl-

edge sharing tool support, are discussed in §9.4. Results of latter part, which focuses

on the application of EAGLE to enable Just-in-Time architectural knowledge, are de-

scribed in §9.5 and in §9.6.

9.2 The Importance of Just-in-Time Knowledge

Many practitioners and researchers of the knowledge management community argue

that instead of browsing numerous documents and other knowledge sources, ideally

people like to compile, capture and receive a smaller and readily digestible volume con-

taining only the really relevant knowledge needed at that moment. The concept of fur-

nishing or making accessible the right knowledge to the right person at any given point

in time is known as “Just-in-Time Knowledge Management” (Conteh et al., 2006). The

importance of Just-in-Time knowledge is further stressed by Kerschberg and Jeong

(2005), who argue that effective decision-making demands that the decision-makers

are able to “sift through the mountains of data to find the right knowledge nuggets at

the right time”.

Access to and delivery of relevant knowledge at the right time is particularly im-

portant for software architects. This need for Just-in-Time knowledge follows from the

fact that software architecting inherently is a decision-making process. This insight has

matured over the past few years, as illustrated by the rather dominant decision-centric

view on architectural knowledge, as discussed in Chapter 3.
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During their decision-making process, architects are in a constant need for access

to relevant architectural knowledge in order to make well-founded design decisions.

Architects often maintain, implicitly or explicitly, a ‘backlog’ of smaller needs, issues,

problems they need to tackle, and ideas they might want to use in the architecting pro-

cess (Hofmeister et al., 2007). This backlog drives the workflow, helping the architect

to determine what to do next. We argue that working on the backlog demands support

for JIT architectural knowledge, i.e., access to and delivery of the right architectural

knowledge, for the right person, at any given point in time. This way, architects can

better discuss open issues, inform other stakeholders, or retrieve specific expertise.

Support for JIT architectural knowledge can be eased by using tools, so that it

becomes easier to sift through the vast amounts of architectural knowledge available.

Over the past few years, several tools have been proposed to support knowledge sharing

in the architecting process, most of which focus specifically on managing architectural

design decisions (Jansen et al., 2007; Capilla et al., 2007) and rationale (Tang et al.,

2007; Falessi et al., 2006; Ali Babar and Gorton, 2007). All these tools follow a typical

codification strategy, which aims to systematically store knowledge in predefined for-

mats so that it can be easily found and reused. However, in order to support access to

other kinds of architectural knowledge, such as expertise or experience of colleagues,

codification alone does not suffice; architectural knowledge that is hard to articulate is

easier shared using a personalization strategy. When using this latter strategy, not the

knowledge itself, but information about its source or ‘owner’ is stored, after which they

can use their personal network to share knowledge.

The importance of personal networks in knowledge sharing is also noted by Huys-

man and Wulf (2006), who conducted studies on practices of knowledge sharing in

industry. They found that when sharing experience, people prefer to look for support

from personal networks rather than from electronic networks to gain knowledge about

the knowledge. This way, experience – or other tacit knowledge – does not need to be

transformed into explicit knowledge to be shared. They argue that knowledge sharing

tools should provide an infrastructure for establishing, maintaining or intensifying rela-

tionships in communities. Translating this requirement to the architecting process, we

argue that JIT architectural knowledge is best supported by tools that not only codify

important architectural knowledge, but also help stakeholders to find each other, so that

architectural knowledge can be shared using personalization techniques as well.

9.3 Research Design

The question central to this third case study at RFA is what architects’ specific archi-

tectural knowledge sharing needs are, and how best to fulfill these needs. Although
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architects in this organization have access to several tools that support sharing archi-

tectural knowledge, the earlier case studies at RFA indicated that they struggle with

how best to use them in their daily work.

The third case study consisted of two main parts. The first part was more problem-

oriented and diagnostic in nature. The main objective of this part was to analyze how

architectural knowledge sharing can best be supported in RFA. For this analysis we

used a user-centered design method, which is designed around the assumption that

people usually consider it easier to indicate what they dislike, instead of only pointing

out positive aspects (Hoorn, 2006). Since the architects at RFA already have archi-

tectural knowledge sharing tools at their disposal, we were able to use this method to

analyze the quality of these tools and identify possible room for improvement. Our

analysis consisted of three consecutive steps, which are elaborated in turn below.

1. An analysis of the intended approach to architectural knowledge sharing. Over

the past few years, four different tools have been introduced at RFA’s architec-

ture department to support architectural knowledge sharing. To elicit the original

requirements of these tools, we have conducted semi-structured interviews with

four managers from this department who have been responsible for introducing

the tools, and who are now responsible for their maintenance. Based on these in-

terviews we could determine how these tools should ideally support architectural

knowledge sharing. The results of this first step are elaborated in §9.4.1.

2. An analysis of the actual approach to architectural knowledge sharing. The first

step helped us to determine how the existing tools should ideally support the

architects in sharing architectural knowledge. In this second step, we verified

how well the intended support is actually perceived by the architects themselves.

The results of this step are elaborated in §9.4.2.

3. An analysis of the desired approach to architectural knowledge sharing. In the

second step the architects indicated the limitations and issues of the existing

architectural knowledge sharing tools. In this third analysis step the same archi-

tects were explicitly asked how this situation could best be improved, i.e., how

they perceive the ideal tool support for sharing architectural knowledge. This

elicitation helped us to identify a set of desired features, based on which we

were able to identify a number of requirements that future tools supporting ar-

chitectural knowledge sharing should meet. All these requirements are further

elaborated in §9.4.3.

The second part of the case study was solution-oriented. The requirements distilled

during the first part of the case study mapped well with the functionality of EAGLE,
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our architectural knowledge portal introduced in Chapter 8. In §9.5 we sketch how

EAGLE may act as therapy to the problems identified in the first part of this case

study. To evaluate whether the practical value of our web portal was acknowledged

by RFA’s architects, i.e., whether it matches their desired approach to sharing archi-

tectural knowledge, we let the architects experiments with it. The key results of this

experimentation exercise are elaborated upon in §9.6.

9.4 Diagnosis: Architectural Knowledge Sharing

Approaches in Practice

In this section we elaborate upon the diagnostic part of the third case study at RFA.

In the following three subsections we respectively discuss the analysis results of the

intended, actual and desired approach to architectural knowledge sharing in RFA.

9.4.1 Intended approach to architectural knowledge sharing

In this first analysis step we analyzed the four different tools available in RFA to support

architectural knowledge sharing. We interviewed the four managers who have been

responsible for introducing the tools, in order to retrieve the original requirements of

these tools. We classified these requirements as depicted in Fig. 9.1. In the remainder

of this section we discuss the main requirements in more detail.

∙ Best practice repository. RFA has developed a knowledge repository that is

primarily intended to support the construction of architectural descriptions. This

support requires that the architects are offered guidance in their decision-making

process. The repository allows storing architectural best practices so that these

can be reused in future projects. Example best practices include references to

conflicts between technology platforms, reference architectures from customers,

or trade-offs between quality criteria. After answering a number of predefined

questions, the architect is assisted by the repository, which uses its best practice

to advise the architect about the architectural solution. During the interview with

the manager responsible for the repository, we elicited that reusability of archi-

tectural knowledge is envisioned as main strength of the repository. Reusing best

practices helps architects to more efficiently arrive at the most suitable architec-

tural solution.

∙ Expertise site. This intranet website uses Microsoft Sharepoint as underlying

technology. Its main purpose is to support community building among the archi-

tects at RFA. Four sub-requirements were identified during the the interview held
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Figure 9.1: Intended approach to sharing architectural knowledge

with the manager of the Expertise website: the ability to discuss ideas, the pos-

sibility to express opinions, a means to manage internal and external documents,

and access to news, events, or other external information sources.

∙ Knowledge maps system. RFA has also developed an organization-wide knowl-

edge maps system that aims to connect knowledge and knowledge workers. To

meet this requirement, the system offers a place where users publish their exper-

tise with respect to architecture-related topics, by filling in detailed user profiles.

Users can use these profiles to search for colleagues with specific expertise or

competences.

∙ File share. In addition to the other three – more specialized – architectural

knowledge sharing tools, the architecture department of RFA uses a standard

file share to manage all documentation. The original requirements of this system

mentioned in the interview with its manager are nothing more than storing and

searching for documents that contain relevant information for the architects.
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9.4.2 Actual approach to architectural knowledge sharing

In this analysis step we interviewed eight architects from the total of 15 within the

architecture department of RFA. This selected group of interviewees included junior

and senior architects with various specialisms. The requirements and sub-requirements

identified during the previous step acted as starting point for these interviews. We asked

the architects what they liked and – more importantly – what they disliked about the

requirements of the four existing tools for architectural knowledge sharing.

The architects were not really satisfied with the best practices repository. Due

to a very non-intuitive user interface and low performance, using the tool is a time-

consuming task. Moreover, in its current form the tool does not offer much support

to decision-making. Although it offers storage for best practices, it does not indicate

to the user which best practice is best to follow in a particular situation. Architects

therefore see little value in the current implementation of the tool. In addition, the

reusability of the repository is low because the content is outdated, and because adding

or modifying the best practices is also time-consuming and error-prone, the costs for

keeping the content up-to-date outweigh the benefits.

The Expertise site did also not particularly please the architects. This site, which is

built as an intranet website, is not well accessible and its performance on RFA’s network

is low, too. As a result, the Expertise site is not often visited by the architects. Con-

sequently, new discussion topics are seldom started, because architects doubt whether

anybody will read them anyway. Another main problem of this tool is its non-intuitive

user interface, which makes publishing knowledge on the site especially cumbersome.

Architects therefore often resort to traditional communication means, such as email or

phone, to communicate their ideas and experience.

The architects were particularly harsh on the knowledge maps system. In their

opinion the main problem with this tool is that it lacks efficient search mechanisms.

Consequently, the architects consider it difficult to quickly find the right knowledge

workers within the organization. Likewise, they doubt whether their knowledge profile

would be read often by colleagues. Due to the perceived low return on investment,

architects often skip filling in such a profile, which was deemed a very time-consuming

process, too.

The file share is used as the primary way of document management in RFA. Never-

theless, the architects are not really positive about its implementation. The architects’

main problem with this tool is not in storing the documents (this is done using the

standard Windows Explorer in Windows), but in retrieving them. Except for a standard

folder structure there is no way to add meta-data. Moreover, the standard search func-

tionality in Windows is not very flexible, which makes retrieving the right document a

painful task.
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In addition to the issues specific to the four existing tools, the architects reported

one major problem of the current situation: the abundance of different information

sources. As a result, architects have difficulty to easily retrieve specific architectural

knowledge needed at a particular point in time, because they do not know where to

start looking. It is not clear which source to trust more. A lack of trust and overview

also results in a lack of motivation of contributing architectural knowledge to these

knowledge sharing tools. After all, where can you best publish your knowledge?

From the above analysis we conclude that there is quite a mismatch between the

intended and actual use of the four tools. All four tools have specific flaws that hinder

widespread success and the lack of integration between the tools confuses architects

which tools to use in which situation.

9.4.3 Desired approach to architectural knowledge sharing

During the interview round with the eight architects we also elicited their desired way

of sharing architectural knowledge. We followed a similar approach as while identi-

fying the intended approach to architectural knowledge sharing (see §9.4.1), only this

time we focused on what the architects consider important requirements for any (fu-

ture) architectural knowledge sharing tool. These requirements are further decomposed

into sub-requirements whenever possible, after which we ranked them in order of im-

portance based on how often they were mentioned by the interviewees. The resulting

ranked classification of requirements is depicted in Fig. 9.2.

1. Integration. The requirement considered most important by the architects is

that a tool environment should offer a central point of access to the various types

of functionality available. This central point of access should be both attractive

and intuitive. Attractiveness is key in the sense that it increases the chance for

the tool’s widespread adoption. Intuitiveness decreases the learning curve and

makes using the tool fun. In addition, the architects noted that customization

is important, because not all users have the same knowledge needs. Depending

on current experience or interests, you might want to adapt the content shown

or the user interface itself to your liking. Another requirement mentioned is

that if new architectural knowledge emerges, a notification should be sent. This

improves the overview users have on newly published architectural knowledge,

which keeps them up-to-date. Finally, to further add to the integration strength,

the architects also mentioned the need for links to external information sources,

such as white papers, seminars and trainings, or other corporate communication.

2. Project view. The architects indicated that one major improvement for the cur-

rent situation would be the support for a project view that enables management of
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Figure 9.2: Desired approach to sharing architectural knowledge

project-specific architectural knowledge. The main advantage of such a project

view is that it offers a central point of access to easily search all architectural

knowledge related to a particular project. For stakeholders that join a project at

a later point in time, such a central point of access is helpful to quickly become

acquainted with the ins and outs of the project. A sub-requirement that follows

from this search requirement, however, is that the maintainability of documents

is high. In addition, architects required that the project view should contain in-

formation about the project stakeholders. This information may include standard

personal contact information, but also more architectural knowledge related con-

tent such as expertise areas of people. Finally, the architects indicated a need for
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discussion board functionality to be used by project stakeholders, so that issues,

design decisions or conflicts can be quickly communicated.

3. Manage documentation. Related to the previous category is support for manag-

ing documentation. The difference with the project view is that the scope may be

(much) broader, including all sorts of company documents. As with the project

view requirement, searching documents was considered of prime importance by

the architects, since this is one of the things that is currently implemented poorly.

Consequently, sufficient meta-data has to be added to the documents in order to

support intelligent search queries.

4. Community building. In contrast with the need for document management is

the architects’ wish to support building a community within their department.

Although the architects acknowledge the power and importance of traditional

conversations and meetings – both formal and informal – with respect to tool

support they reckon it would be very helpful if there were facilities in place that

help people to connect with each other. Consequently, requirements in this cate-

gory include support for discussions and sharing expertise, but also overviews of

‘who knows what’ and ‘who is doing what’ in the organization. Finally, the abil-

ity to share news and events with colleagues would further add to the community

feeling.

5. Constructing architecture descriptions. The last main category relates to one

of the primary deliverables of the architects in RFA: architecture descriptions.

These documents usually contain a variety of architectural knowledge, and usu-

ally take multiple days or weeks to construct. All sort of automated support dur-

ing the process of making well founded decisions, followed by reflecting these

decisions in the architecture description is highly appreciated.

If we compare the requirements classifications of the intended and desired approach

to architectural knowledge sharing (see Fig. 9.1 and Fig. 9.2), we can make a few inter-

esting observations. First of all, the requirements related to ‘constructing architecture

descriptions’ are mentioned both in the intended approach as in the desired approach.

Obviously, the architects still like the underlying concepts, but are unhappy with the

way the current tools implement these concepts. Secondly, although ‘manage docu-

mentation’ was already an original requirement, architects at RFA take a consumer

perspective and desire more focus on access to stored documents, instead of just stor-

ing them. For ‘community building’ we observe the opposite trend. Here, the architects

put more emphasis on publishing architectural knowledge, such as ideas, news, and

other information; something which was poorly implemented in the current Expertise
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site. In addition, the sub-requirement related to finding colleagues based on exper-

tise or competence suggests that architects not only rely on codification mechanisms,

but also desire personalization strategies to share architectural knowledge. This wish

for ‘hybrid’ architectural knowledge sharing is further stressed by the ‘project view’

requirements, that indicate a need for both codification (e.g., document management)

and personalization (discussion boards) techniques. Finally, the desire for ‘integration’

is something that was obviously overlooked when designing the four existing tools.

9.5 Therapy: Architectural Knowledge Portal

The requirements identified in the previous section provide us with a good overview of

the architectural knowledge sharing needs of the architects in RFA. The most important

requirement is that of an integrated environment to share architectural knowledge. In

addition to this need for integration, we conclude that architects are in need for what

we defined earlier as Just-in-Time architectural knowledge. Requirement categories 2

till 5 of Fig. 9.2 demand various mechanisms to get easy access to available architec-

tural knowledge. As discussed in the previous section, a hybrid strategy is needed to

support both codification and personalization of architectural knowledge. The project

view and community building requirements further show the need architects have for

a tool environment that supports them in using their personal networks. Meeting these

requirements demands specific personalization techniques.

The identified requirements are largely in line with the vision and scope of EAGLE,

the architectural knowledge portal of which the architecture design and main modules

were discussed in Chapter 8. First of all, EAGLE’s modules enable both codification

and personalization of architectural knowledge, a desired requirements of RFA’s ar-

chitects. Moreover, EAGLE’s project environment (see Fig. 8.3), was one of the key

requirements identified in §9.4.3. In a project environment in EAGLE, architectural

knowledge is available in various forms, such as a list of the major project deliverables

(center), a list of involved stakeholders (left), and an integrated discussion board where

project stakeholders can discuss open issues (bottom). If necessary, access control mea-

sures can be used to ensure that only specific architects have access to the architectural

knowledge stored.

Document management is supported by EAGLE by the document repository plu-

gin. Instead of merely storing the documents, additional meta-data can be added to

the underlying data model and documents can be classified using a tailored architec-

tural knowledge category model that we designed together with the architects of RFA.

Consequently, advanced search functionality is offered, such as searching for “all doc-

uments about Project X that have the status Final” or “all documents related to security
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written by John Doe”. Using this search functionality, architects can quickly retrieve

the documents that match their need.

Architectural best practices are stored in a repository that is added as a plugin to

EAGLE. In this repository, architectural knowledge is codified in predefined formats,

and could be retrieved for various purposes, such as reusing past design decisions, or

to find out what best practices exist on a certain topic. In order to overcome the issues

with the repository that were mentioned in §9.4.2, we have made the repository more

intelligent, better maintainable, and better-looking.

Whereas the document repository and best practices repository are good examples

of plugins that follow the architectural knowledge codification strategy, EAGLE also

supports architectural knowledge personalization to fully comply to the community

building requirements. To this end, it contains a ‘yellow pages’ plugin. On the yellow

pages architects can get an overview of all other architects. By selecting the name, a

more detailed information page is shown with personal information and contact infor-

mation of that person. We are currently extending this information with more detailed

information, such as the expertise areas of the architect, and which projects and activ-

ities he is assigned to. This allows retrieving knowledge about ‘who is doing what’,

and ‘who is knowing what’ in the organization. Although at first sight this information

is not directly pertaining to the architecture being designed, it can still be valuable in-

formation for architects, because it might tell them who to contact if they require help

with specific architectural topics.

All the plugins mentioned above are accessible from EAGLE’s start page. This start

page acts as central point of access, and offers an intuitive user interface to ensure easy

navigation. In addition, the portal also incorporates functionality to add personalized

links to various information sources. Various RSS feeds can be loaded in the portal,

allowing architects to access all sorts of non-architectural information via the portal

as well, such as the daily news headlines, the weather report, etc. This coherence be-

tween all knowledge – architectural or not – is in line with the integration requirements

identified in §9.4.3.

In addition to the main plugins described above, EAGLE has three main features,

which will be elaborated upon below in turn:

1. Integrated functionality. EAGLE offers a central access point to various types

of functionality by means of a start page. From this start page all important func-

tionality can be accessed by the architects by one mouse click, after which they

can quickly retrieve the architectural knowledge they need, using codification

techniques, personalization techniques, or a combination.

2. Stakeholder-specific content. EAGLE offers an intuitive and attractive user

interface. Since architects are already familiar with web pages, navigating the

156



9.5. THERAPY: ARCHITECTURAL KNOWLEDGE PORTAL

portal is easy. Both the user interface and the content can be customized by ar-

chitects. Different architects can thus focus on different types of architectural

knowledge. A lead architect supervising a project for example would be mainly

interested in what all architects are currently working on, and what their specific

expertise areas are. A security architect on the other hand wants to be kept posted

on specific developments in his domain, so he would be interested in documen-

tation, discussions or news feeds related to this topic.

3. Notifications and subscriptions. EAGLE has a built-in subscription and notifi-

cation system. Architects can subscribe to specific architectural knowledge top-

ics (e.g., a topic of a discussion forum) or artifacts (e.g., a document). As soon

as relevant architectural knowledge is published (e.g., another architect posts a

message on the forum) or changed (e.g., a document expires or is replaced by a

newer version) a notification is sent to all subscribed architects. The subscription

and notification mechanisms allow users to keep up-to-date and provides access

to relevant architectural knowledge at any point in time.

We argue that the above three features together ensure that EAGLE offers sup-

port for what we defined as Just-in-Time architectural knowledge. The integrated

functionality provides access to ‘the right architectural knowledge’. The support for

stakeholder-specific content ensures that ‘the right person’ finds what he wants. Fi-

nally, the subscription and notification mechanisms allow architects to stay up-to-date

by delivering the relevant architectural knowledge to them when needed.

9.6 Experimentation

In order to assess the practical value of EAGLE, we let 11 architects of RFA experiment

with it. Among these 11 architects were the eight we had interviewed earlier during

this case study, plus three additional ones. These latter three architects were included

because we deemed them as more objective, so that the assessment results are more

representative for the whole population.

The experimentation consisted of executing predefined scenarios that mapped on

the requirements identified in §9.4.3. The architects had to execute each scenario us-

ing EAGLE (e.g., the scenario “retrieve the newest version of the technical design of

Project X, using the document repository plugin.”), after which they had to give scores

for the implementation using a 5-points Likert scale. When comparing the scores from

the three new architects with those of the eight others, we did not see any significant

differences. The main results of the experiment are discussed below.
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In its current form EAGLE is already an improvement over the existing tools that

were in place in RFA. Most architects (82%) indicated that the document manage-

ment properties of the portal are an improvement over the existing fileshare. Because

of the categorization model and metadata that can be added to documents, retrieving

documents is much easier. However, architects mentioned that a change in mindset

is required before everyone is used to the new way of uploading and tagging docu-

ments. In addition, they noted that disciplined use of the portal remains an important

prerequisite to success.

Although the majority of architects (91%) was particularly fond of the integration

aspects of EAGLE, in which document management, project environments, discussion

boards and personal contact information is integrated, they wanted the portal to in-

tegrate even more with existing tools of the department, such as email clients (send

emails to colleague, send invitations for meetings, attach documents to emails, store

documents from emails in the repository), calendars (todo lists in the portal), or project

tools (assign people to tasks or activities using the portal).

All architects liked the way the combination of the notifications and subscriptions

of EAGLE work. They deemed it considerably useful to stay up-to-date on architec-

tural knowledge available that might be of interest. The fact that EAGLE has different

types of notifications (e.g., ‘document expired’, ‘new forum post’) is highly appreci-

ated, and the fact that architects are free to subscribe to architectural knowledge re-

flected in various ways (e.g., news, discussion boards, documents) is liked as well.

Some architects mentioned that the notification and subscription system might also

add to the attractiveness of the portal, in the sense that architects are motivated to visit

it on a regular basis (to see if new relevant architectural knowledge is present). It there-

fore appears that EAGLE is to a certain extent ‘sticky’ to its users, which is considered

an important prerequisite for successful adoption of knowledge management tools in

practice (Bush and Tiwana, 2005) and identified as desired property of such tools in

Chapter 8.

EAGLE’s emphasis on providing access to the organization’s vast amount of archi-

tectural knowledge is appreciated by all the architects. This portal in its current form

supports access to and delivery of the “right architectural knowledge on the right time”,

and leaves sufficient freedom to the architects on how to visualize this knowledge.

Apart from this support for Just-in-Time architectural knowledge, EAGLE emphasizes

the social capital, i.e., supporting sharing in a community as opposed to individually

consuming knowledge. As a result, by improving collaboration between architects of

RFA, our portal is a good first step to create a real ‘community of architects’.
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9.7 Conclusions

In this chapter we have investigated what are the typical architectural knowledge needs

of architects at RFA, and how these needs can best be fulfilled. We have identified five

main requirements for an architectural knowledge sharing environment: 1) integration,

2) project views, 3) manage documentation, 4) community building, and 5) construct-

ing architecture descriptions. Based on these requirements - that also form an answer

to research question RQ-II.7 – we have concluded that architects are best supported by

an integrated tool environment that supports Just-in-Time architectural knowledge.

To meet the above requirements we have experimented with EAGLE, our archi-

tectural knowledge web portal. Main features of this portal include integrated func-

tionality to retrieve architectural knowledge, support for stakeholder-specific content,

and a notification and subscription system. Architects can use EAGLE to connect to

colleagues or other involved stakeholders by retrieving ‘who is doing what’ and ‘who

knows what’. In addition, codified architectural knowledge in a document repository

or best practice repository can easily be accessed using advanced search mechanisms.

Finally, collaboration is explicitly supported by EAGLE’s discussion board and project

environment.

By offering an integrated environment for architects that incorporates various func-

tionality to easily get access to available architectural knowledge, we argue that EA-

GLE is able to deliver the continuous flow of relevant information that architects need

when working on their backlog (Hofmeister et al., 2007). Moreover, our portal’s func-

tionality to share architectural knowledge follows a hybrid architectural knowledge

sharing strategy, combining both codification and personalization techniques. Because

explicit attention to personalization is incorporated in the portal, it supports architec-

tural knowledge sharing by focusing on social capital (Huysman and Wulf, 2006).

A last important characteristic of EAGLE is the balanced focus on architectural

knowledge consumption (i.e., retrieving architectural knowledge), and production (i.e.,

publishing architectural knowledge). This distinguishes EAGLE from existing archi-

tectural knowledge tools, which often focus solely on the producing side (Avgeriou

et al., 2007b).

Experimentation with EAGLE further indicated that it is already a definite improve-

ment over the existing tools within RFA. Nevertheless, as future work we plan to ex-

tend our portal (e.g., with additional plugins) that further ease sharing of architectural

knowledge. One of these extensions, as discussed in Chapter 10, features the use of

wikis, allowing architects to easily produce architectural knowledge.

A final insight, of which the software architecture research community should take

notice, is the fact that architects – at least the ones at RFA – apparently are not particu-

159



CHAPTER 9. JUST-IN-TIME SUPPORT FOR ARCHITECTS

larly interested in very ‘specialized’ architectural knowledge support, such as detailed

meta-models, templates or process guidelines. They seem to already have their tech-

niques and processes in place to design and maintain software architectures. What is

important, however, is the facilitating support during their everyday decision-making

process by means of continuous access to and delivery of relevant architectural knowl-

edge.
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10
Wiki Support for Architects

In this chapter we experiment with an enterprise wiki environment to assess how suit-

able it is in supporting architects in sharing architectural knowledge. Our experiments

show that wikis are particularly strong in creating a ‘community of architects, because

they offer support for managing both architectural and ‘non-architectural’ knowledge.

Moreover, the wikis versatility – demonstrated by its integrated and diverse functional-

ity – makes it a worthy competitor of the web portal presented in earlier chapters.

10.1 Introduction

Wikis are becoming increasingly popular knowledge management systems in both soft-

ware engineering research and practice, indicated by a number of recent papers about

this subject (Bachmann and Merson, 2005; Schuster et al., 2007). We are particularly

interested in the applicability of wikis in the software architecting process. During our

fourth case study at RFA, we therefore experimented with creating and using an en-

terprise wiki platform in the architecture department of this organization. By working

together with, and interviewing several architects, we were able to acquire a solid un-

derstanding of a wiki’s potential in the software architecting process. In terms of plac-

ing this case study in an action research cycle it is similar to the previous one described

in Chapter 9; the experimentation and evaluation of a tool environment corresponds

well to the action taking and evaluation phases of action research.

Our experimentation showed that wikis can well be employed as environment for

sharing architectural knowledge. One of its main strengths is strong community build-

ing and communication support, something our EAGLE web portal fell a bit short on,

as reported in the previous chapter. Another strong point is the broad range of plugins

available to increase the functionality of the platform. This makes a wiki an interest-
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ing platform to create a blackboard system – a vision described in Chapter 8 – that

included various services to assist architects in decision making, architectural knowl-

edge retrieval, and other knowledge-intensive activities.

In an attempt to more precisely define the potential merit of wikis in software archi-

tecting, in this chapter we reiterate over some main characteristics of software archi-

tecting. Based on this characterization we analyze what contribution a wiki could offer

to a typical architecting process. To place our analysis results in context we compare

the strengths and weaknesses of a wiki to some existing tools that support architectural

knowledge management, including EAGLE. The comparison shows that whereas most

other tools are stronger in codifying specific architectural knowledge concepts, a wiki

prevails as versatile and all-round knowledge management environment. To assist re-

searchers and practitioners in setting up such an environment, we propose a number of

do’s and donts for wiki usage in the software architecting process.

In §10.2 we reiterate over theories presented in earlier chapters to outline what

knowledge needs architects typically have. In §10.3 we study in detail how suitable

wikis are in addressing these knowledge needs using experimentations with an enter-

prise wiki. Based on these experiments in §10.4 we discuss how suitable wikis are for

sharing architectural knowledge by comparing the wiki to other tools and by formulat-

ing a number of dos and don’ts.

10.2 Knowledge Needs of Architects

As explained before, software architects are typical knowledge workers. They are con-

sidered the ‘spider-in-the-web’ of the software development process. While commu-

nicating with both business and technical stakeholders, they need to negotiate and find

a balance between these stakeholders’ needs and concerns, take the important archi-

tectural design decisions, reuse existing architectural styles and patterns, evaluate and

review architectural solutions and create architectural standards and guidelines.

To better understand the knowledge needs of architects, in this section we first

reiterate over some trends in software architecting that have been introduced in earlier

chapters. Then, based on these trends, we elaborate upon the knowledge needs of

architects by focusing on ‘architectural knowledge’ and ‘non-architectural knowledge’,

respectively.

With respect to how the software architecture field developed over the past few

years, four trends can be observed:

∙ Increased collaboration. In recent years, software projects have increased con-

siderably in size and so have the number of architects working on these projects.
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In these projects collaboration takes place between various (types of) stakehold-

ers, which was confirmed during our first case study at RFA (see Chapter 7).

Architectural discussions are held between large groups of stakeholders, who

vary in background and expertise. Consequently, the knowledge flows in the

architecting process are diverse and frequent, which calls for proper support to

enable efficient communication and collaboration between team members.

∙ Focus on decision making. Architecting is a typical consensus decision making

process, as explained in Chapter 8. In order to take major architectural deci-

sions, reaching consensus between the main stakeholders is vital. Architectural

decisions can have a relatively large impact on the final system, because they

constrain lower-level design issues. This trait makes these decisions often irre-

versible, making the need to formulate and communicate a proper rationale for

these decisions even higher. Therefore, architects spend significant amount of

time in negotiating and discussing (both verbally and by means of documenta-

tion) with the parties involved, and in making tradeoffs between various design

alternatives to reach consensus. During this process the architect also needs to

guarantee that decisions taken do not conflict with company regulations, refer-

ence architectures or other standards and rules.

∙ Distributed development. Architecting is often done by architects who are

spread over multiple teams in one organization. When the organization has mul-

tiple sites, online communication replaces traditional coffee room talks, which

are not an option anymore to share valuable knowledge. Global Software Devel-

opment (GSD) affects the way the architecting process is organized even further.

Architectural knowledge management needs to take into account the challenges

that arise as a result of the geographical, temporal, and socio-cultural distance

innate to GSD (Clerc, 2008).

∙ Need for reusable assets. With the maturation of the software architecture field

in both research and practice, architectural solutions (e.g., patterns and styles)

are better formulated, using well-documented architectural views become com-

mon practice, and architectural standards and principles are more frequently em-

braced by the stakeholders. Consequently, architects increasingly benefit from

such reusable assets; they do not always have to reinvent the wheel, but instead

can learn from prior experience. In order to reuse such architectural knowledge,

retrieving the right knowledge at the right time is considered crucial (see Chap-

ter 9).

In a modern-day architecting process that is characterized by the trends described

above, architects produce and consume much knowledge. To accommodate architects
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in all their knowledge-intensive activities, proper support for knowledge sharing should

focus on both ‘architectural knowledge’ and ‘non-architectural knowledge’:

∙ Architectural knowledge. As presented in Chapter 3, architectural knowledge

can be classified using two dimensions: tacit vs. explicit and application-generic

vs. application-specific. Application-specific architectural knowledge is im-

portant knowledge to understand why an architecture for a software system is

the way it is. It is often defined as the set of design decisions, including the

rationale for these decisions, together with the resulting architectural design.

Application-generic architectural knowledge is knowledge that is more often in-

ternalized as tacit knowledge and built up by the architect as experience, domain

knowledge or expertise. It includes architectural styles, patterns, and tactics, and

knowledge about when and how to use specific technologies, tools and methods.

Application-generic architectural knowledge enables practitioners in producing

or consuming application-specific architectural knowledge (e.g., taking a high-

quality architectural decision based on a proper rationale) and is therefore also

very important, as confirmed by research of Clements et al. (2007) about the

duties, skills and knowledge of architects.

∙ Non-architectural knowledge. Apart from the need for architectural knowl-

edge, architects also require ‘non-architectural’ knowledge to perform their daily

tasks, just like other IT professionals do. This non-architectural knowledge

is very broad but equally crucial for the architecting process as architectural

knowledge is. Non-architectural knowledge includes process management in-

formation, information about the organization and the context and domain, in-

formation about the business processes of the internal and customer organiza-

tion, knowledge about both architectural and non-architectural standards (e.g.,

TOGAF, Sabanes-Oxley), and knowledge about the current status in the organi-

zation (e.g., ‘who is doing what’ or ‘who knows what’).

Both types of knowledge need to be managed and shared to effectively assist archi-

tects in their daily work. Tools reported in literature often focus on modeling, retrieving

and editing architectural design decisions, rationale and related architectural concepts.

Examples include the tools that were examined in Chapter 8: ADDSS (Capilla et al.,

2006, 2007), DGA DDR (Falessi et al., 2006), PAKME (Ali Babar and Gorton, 2007),

and Archium (Jansen et al., 2007). However, support for collaboration, decision mak-

ing and distributed development is not always strongly supported by these tools, which

raises the question whether they are suitable as overall knowledge sharing platform in

software architecting. In previous chapters we have discussed EAGLE, a web portal

for architectural knowledge. Whereas this portal offers a range of methods for sharing
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knowledge, architects indicated that with respect to collaboration and communication

support, more advanced support would be welcomed. It is therefore only a logical

choice to investigate how well wikis meet these requirements.

10.3 A Wiki in the Architecting Process

Ever since the advent of Wikipedia, the interest in wiki-based systems is growing

steadily. Numerous wiki software packages have been proposed and commercial or-

ganizations are increasingly interested in setting up collaborative work-spaces where

people meet, produce and consume knowledge. Within the software engineering com-

munity the interests in wikis is growing as well. Bachmann and Merson (2005) de-

scribe their experience with applying a wiki environment for supporting architecture

documentation. Schuster et al. (2007) propose a wiki-based tool to document architec-

tural design decisions.

During the fourth case study at RFA we experimented with an enterprise wiki envi-

ronment in the architecture department. Initially, we wanted to develop a wiki-plugin

to EAGLE, the portal experimented with in the third case study. After some investiga-

tion we found that a more feature-rich and user-friendly option was to take an existing

enterprise wiki tool, and further tune it to create an architectural knowledge sharing en-

vironment. This way a lot of ‘out-of-the-box’ collaboration and community-building

features of the enterprise wiki environment could be reused, thereby improving exactly

those characteristics of EAGLE that called for improvement (cf. Chapter 9, §9.6).

Our wiki is built using the Confluence Enterprise wiki software 1. In the next four

subsections we elaborate upon our experience by focusing on the context in which

the wiki was used, the adoption strategy we followed, and how architectural and non-

architectural knowledge was managed by the wiki, respectively.

10.3.1 Case study context

The experiments were conducted at one of the architecture departments of RFA. Ar-

chitects of this department work on architectural solutions for local and national gov-

ernment. The department consists of around 30 enterprise and IT architects, who work

on various projects at customer organizations and internal projects. At least once a

week the architects visit the department’s office for meetings and sharing experience

and ideas with colleagues. Often just coffee room talks and small (often informal)

meetings were used to this end, but also some repositories and an intranet website exist

1http://www.atlassian.com/software/confluence/
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in which architectural knowledge is stored. None of the architects had been using a

wiki environment before, so apart from being familiar to Wikipedia, they were new to

this type of knowledge management platform.

The choice for the Confluence Enterprise wiki had been taken jointly by us (the

researchers) and the management of the architecture department. Prior to our experi-

ments the unit manager had asked one architect to study available wiki environments

(e.g., MediaWiki, XWiki, wiki support in MS Sharepoint 2007) for their suitability.

In a comparison that was made Confluence turned out to be the most promising wiki

environment, mostly due to its ‘rich text editing’ features and the fact that a Confluence

wiki is highly customizable using a plugin-system. Compared to e.g., MediaWiki (the

environment on which Wikipedia is hosted) in Confluence wiki pages can be written

in a way similar to MS Word (a tool frequently used by architects). With respect to the

integration, Confluence made it possible to link from the wiki to existing Sharepoint

repositories full of corporate information.

By choosing Confluence we ensured that the wiki was not becoming yet another

stand-alone knowledge management environment, like several smaller systems that al-

ready existed in the architecture department of RFA. From earlier research we know

that stand-alone tools might become difficult to maintain, are hard to keep up-to-date

and confuse practitioners, who have difficulty determining which one to use for what

purpose and where to find what architectural knowledge (cf. Chapter 9).

10.3.2 Adoption strategy

In order to increase the adoption of the wiki in RFA, we decided to start with generating

“critical mass” on the wiki with three architects, before showing the wiki to the whole

team. By following this Critical Mass pattern (Mader, 2007) we automatically used

additional wiki patterns as well, such as the Champion pattern (one of us acted as

wiki champion), the Moderator pattern (the three architects were appointed Moderators

of specific parts of the wiki), and the FAQ pattern (we made a page with frequently

asked questions to help wiki users with basic functionality and features). More useful

information on these (and other) patterns can be found in (Mader, 2007) or online 2.

After working for two months in a core team, which consisted of the champion

and three moderators, the wiki had been filled with initial content, the layout had been

changed to match corporate styles, and the functionality and quality of Confluence had

been thoroughly tested. A screenshot of the wiki’s start page is depicted in Fig. 10.1.

The next step was informing the other colleagues of the wiki’s existence. To this

end an email was sent among the team members with the wiki’s address, login details

2http://www.wikipatterns.com
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Figure 10.1: Screenshot of the start page of the wiki

and some general introduction to the wiki’s aim and scope. This introduction email

resulted in an immediate boost of wiki activity. Several architects created a personal

wiki page within a day, and started adding comments to existing content on the wiki.

Others uploaded documents to the wiki in an attempt to share their recent work to the

group. It is fair to say that the enthusiasm was wide-spread.

The enthusiasm of the wiki reached other departments within RFA as well. Several

colleagues from other departments came by for a demonstration of its capabilities, and

became excited as well. We provided several of them with their own ‘wiki spaces’ so

that they could further experiment or play with the wiki themselves. After half a year

management of RFA noticed the wiki’s popularity and decided to acquire a company-

wide license and to place the maintenance of the wiki under the responsibility of the

central IT department. As a result in the near future the wiki will be used in a more

professional way throughout RFA.
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10.3.3 Support for architectural knowledge

We have used the wiki for storing and sharing both architectural knowledge and non-

architectural knowledge. Parts of the wiki were filled with reusable architectural prin-

ciples and rules (one per wiki page) after which an overview page was generated us-

ing the ‘table of contents’ plugin. The same approach has been used for architectural

knowledge concerned with architectural technologies and patterns.

It should be noted, though, that the architects had some trouble with structuring

the architectural knowledge in a suitable way. Being used to writing documents and

storing these in repositories with some meta-data, it took a mindset change before some

architects understood that storing the knowledge in text-format directly in wiki pages,

and labeling these pages for retrieval purposes is all there is to it in a wiki environment.

The knowledge entities can be edited directly in wiki-markup, and the documents are

redundant, although they might be archived (i.e., added as attachment) for users who

wish to read more about the topic.

Unfortunately, the approach sketched above was not that easy. Adding meta-data

such as specific properties of architectural decisions was quite cumbersome. Con-

fluence does not provide much support for this. It does, however, offer some plug-

ins that address this topic. One of these is a plugin that allows connections to SQL

databases, but we found that this connection is read-only. Consequently, one cannot

update database tables from within the wiki pages, which limits the integration with

relational databases significantly. There is also a meta-data plugin in Confluence, but

this offers only limited functionality compared to what specific databases based on

their own data model could offer. Storing architectural design decisions was therefore

not an easy task.

As a solution to model architectural knowledge in the wiki we are currently devis-

ing templates to be used by the architects to further codify the architectural knowledge

concepts in a uniform way and to ensure that this knowledge is sufficiently enriched

with meta-data that is stored with it. Further experimentation is needed to see if these

templates offer sufficient guidance to the architects. We also plan to investigate whether

we could ‘borrow’ best practices from the semantic wiki community (see e.g., (Schaf-

fert et al., 2008)) to handle architectural knowledge concepts in a more mature way.

Another nuisance when working with the wiki was the support for images. Ar-

chitects often use diagrams and models to depict their architectural views (Clements

et al., 2002). They sometimes use specialized modeling tools to this end, but often

also construct diagrams in MS Word or Visio. When storing architectural documenta-

tion in wiki pages the architects found that each image needs to be added as separate

attachment and that editing images from within Confluence is not possible. Since ar-

chitectural views are update frequently – based on stakeholder discussions and negoti-
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ations – this is a drawback when using the wiki as main storage place for architectural

deliverables.

10.3.4 Support for non-architectural knowledge

To our surprise one of the main strengths of the wiki was not its support for managing

architectural knowledge, but how it offers a central storage place for non-architectural

knowledge that architects produce and consume during their daily activities. Architects

put meeting minutes on the wiki, but also a holiday roster, and a list of the team mem-

bers’ birthdays. They also constructed a ‘yellow pages’ system by creating a wiki page

for each team member, including contact information, current tasks and activities, and

interests and expertise. From what we observed it is exactly these ‘related’ knowledge

pages that made the wiki fun to use and to visit regularly. It attracted the architects

to the platform, it decreased the emails being sent with attachments significantly, and

it even started some healthy competition between a few architects, who checked the

wiki’s activity monitor on a daily basis to see who had the honor of being the ’most

active contributor’.

10.4 Wikis for Architectural Knowledge Sharing?

Based on our experience with using a wiki in RFA, we are able to indicate the main

strengths and weaknesses of this tool for its use in the architecting process. Compared

with EAGLE our wiki offers increased support for collaboration and communication,

both of which were requested by the architects of RFA during the previous case study.

Moreover, having a intuitive user interface and strong usability, our wiki can be used

as encyclopedia of architectural knowledge, as well as a community where architects

can easily find each other. The easy integration with Microsoft Office tools (e.g., trans-

forming a Word document in one or more wiki pages with just one mouse click), and

corporate repositories (Confluence offers a Sharepoint connector to sync wiki content

with Sharepoint sites) further places the wiki as central knowledge management envi-

ronment for architects and other interested stakeholders. This integration with com-

mercial tools would be rather costly to implement ourselves as extension to EAGLE.

In order to determine whether wikis are suitable to share architectural knowledge,

in the next subsection we compare wikis to some state-of-the-art architectural knowl-

edge management tools. For this comparison we zoom in on the four characteristics of

the architecting process discussed in §10.2. This allows us to better define the relative

strengths and weaknesses of a wiki environment when used as architectural knowledge

management platform.
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In §10.4.2 we list a number of dos and don’ts for using wikis in the software ar-

chitecture domain. During our experimentation we found that several personal and

organizational factors impact the success of a wiki in the software architecting process

either positively or negatively. Researchers or practitioners who wish to set up a wiki

environment themselves can use our dos and don’ts to increase the chance of success.

10.4.1 Comparison with other tools

As discussed in §10.2, in the architecting process:

1. A lot of collaboration and communication takes place due to the large software

development teams and the projects these teams work on.

2. Consensus decision making is one of the primary activities that stakeholders

spend their time on.

3. Online communication becomes more and more important due to distributed de-

velopment which inhibits traditional coffee room talks.

4. Retrieving architectural assets is crucial to enable reuse and to deliver high-

quality architectural solutions.

Below we compare architectural knowledge-specific tools (ADDSS, PAKME, DGA

DDR, and Archium) with the Confluence wiki by zooming in on these characteristics

of architecting.

When taking a close look at the existing architectural knowledge management tools

listed before, we see that these offer specific support for codifying and retrieving archi-

tectural knowledge concepts. In Archium, ADDSS and DGA DDR the main concepts

are design decisions, whereas in PAKME also patterns and styles are included. All of

these tools use tailored databases to store and edit the knowledge and use an underlying

data model to define the knowledge they focus on. Retrieving architectural knowledge

assets is therefore well supported by these tools. As we have described in §10.3 the

wiki does not have strong support for modeling architectural knowledge concepts out-

of-the box, which makes it harder to retrieve such knowledge using the wiki than when

using one of the architectural knowledge-specific tools.

When looking at the support for online communication, the wiki stands out. Cur-

rent versions of ADDSS, DGA DDR, PAKME and Archium run locally on a pc and

therefore cannot be collectively used by practitioners working on different sites. The

wiki on the other hand is web-based and aimed at targeting communities. It supports

concurrent editing of content, version management, and users can easily provide com-

ments on wiki pages created by others.
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As described in §10.3, a major strength of the wiki is its support for managing

non-architectural knowledge, such as meeting minutes, plannings, deadlines, progress

reports, etc. This non-architectural knowledge can be stored in the various wiki pages,

and can be very supportive for stakeholders involved in consensus decision making.

They could use the wiki as central archiving environment for all information used in

software architecture projects. This makes the wiki a much more ‘all-round’ tool than

the architectural knowledge-specific tools, which offer only codification techniques for

architectural knowledge concepts.

Another drawback of the architectural knowledge-specific tools is that they fall

short when it comes to supporting collaboration. In the architecting process architects

typically work on designing and describing or communicating architecture solutions.

For the description part the wiki offers a nice groupware platform where architects

can collaboratively produce new information, review each others work, etc. And since

architecture projects are growing larger and larger, involving more and more stakehold-

ers, groupware support is much welcomed. In addition, the architectural knowledge-

specific tools tend to have a rather high learning curve, whereas the wiki’s usability

resembles both text-editors and websites, to which architects are already familiar.

10.4.2 Dos and don’ts for wikis in the architecting process

If we summarize the comparison described in §10.4.1 we conjecture that the wiki is

strong in its support for collaboration, non-architectural knowledge and online com-

munication, whereas the architectural knowledge-specific tools offer more thorough

support for the retrieval of reusable architectural knowledge assets. Based on these

results we conjecture that a wiki can make a fine architectural knowledge management

environment.

Keep in mind though that a successful wiki is something that takes time to set up.

In this section we provide some dos and don’ts when setting up a wiki environment in

the architecting process. These dos and don’ts have been defined based on 1) multiple

interviews and discussions with the architects at RFA who were most active on the

department’s wiki, and 2) a review of available literature on wiki patterns (Mader,

2007), based on which we analyzed which ones are most significant in the software

architecting process.

1. [Do] start small. Define a startup period in which preparations on the wiki en-

vironment begin. Produce an initial set of wiki content with a small group of

people, who use this startup period to become familiar with the wiki system and

the ins-and-outs of wiki markup. Appoint one or more wiki champions who will

promote the wiki to colleagues and assign moderators who will safeguard the
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quality of the knowledge stored in the wiki. Make sure that the champions and

moderators have a clear idea on their responsibilities. Only when all the above

has been arranged, the wiki should be announced to the whole team or depart-

ment. Having more knowledge available from the start will induce architects to

use the wiki as primary knowledge environment (cf. Chapter 7).

2. [Do] allow and stimulate all types of knowledge. Do not restrict the wiki to

only very specialized architectural knowledge such as design decisions, archi-

tectural principles or standards. As discussed, a wiki is particularly strong in

managing non-architectural knowledge, so make sure that users have sufficient

freedom to manage such knowledge in the wiki as well.

3. [Do] strive for integration. To increase the chance that users consider the wiki

an integral part of their daily work, integration with existing systems such as

file shares, a Sharepoint site, etc. is crucial. Ideally the wiki is positioned as

core system for codifying both non-architectural and architectural knowledge,

and when necessary, links and traces to additional systems are made.

4. [Don’t] impose too much structure. It might be very tempting to introduce

lots of templates, rules and guidelines for users to follow or use. However, one

of the wiki principles is that a wiki should become a self-organizing system in

which users incrementally improve the quality and correct mistakes. Introducing

templates, e.g., to model architectural knowledge concepts is a good thing to do,

but do not overdo it, since it might kill the ‘fun’ of working with a wiki.

5. [Don’t] restrict access. Try to keep the wiki contents open to as many users as

possible instead of restricting access to specific stakeholders depending on their

role. By granting access to as much architectural knowledge as possible, reuse

is stimulated and the chance of users correcting or improving knowledge grows.

Classified information defies the wiki philosophy of collaborative editing, so if

access to specific architectural knowledge needs to be restricted, consider storing

it on other systems instead of on the wiki.

Please note that four of the five dos and don’ts listed above are not necessarily

‘architecting-specific’, and could well apply to other domains as well. The one that

stands out, though, is the fact that the scope of the wiki should encompass both archi-

tectural knowledge and non-architectural knowledge. This permits the wiki to become

an all-round knowledge management environment that supports the architecting pro-

cess in a more mature way compared to the other tools.
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10.5 Conclusions

In this chapter we saw that wikis have several characteristics which make them very

suitable as knowledge sharing environment in the architecting process. They could

be employed as all-round environments, offering strong support for collaboration, on-

line communication, and consensus decision making. In an attempt to better answer

research question RQ-II.7 (using a second iteration of tool development and experi-

mentation at RFA), we found that the applicability of wikis as environment for sharing

architectural knowledge is quite broad. Nevertheless, to guarantee the wiki’s success,

a proper strategy must be chosen for setting up and adoption of the wiki in an organi-

zation. To assist both researchers and practitioners in this task, we have established a

number of dos and don’ts for wiki usage in the architecting process.

The most apparent limitation of the wiki we found is that codification of architec-

tural knowledge is less straightforward than with using state-of-the-art tools that are

explicitly constructed for this task, and requires additional support by means of plug-

ins or templates. This drawback, however, is outweighed by the wiki’s versatility to

manage all sorts of non-architectural knowledge related to the architectural knowledge

produced, as well as its support for integration with other tools, intuitive interface and

low learning curve.

Wikis are quite suitable in creating a community of architects in which everybody

knows from each other where certain expertise, or experience resides. This helps ar-

chitects in various activities such as conducting reviews,writing reports, or commu-

nication with stakeholders. The enterprise wiki we experimented with offers various

plugins which add various interesting features, such as modeling support, generation of

statistics and overviews, and even text mining features in combination with database in-

tegration. We argue that these aspects can further support architects in their daily work

by offering smart or pro-active support when needed, in a non-intrusive way (e.g., au-

tomatically identifying patterns or rules from raw wiki content). Semantic wikis seem

promising in this respect, as argued by Lago (2009). In these systems knowledge re-

trieval is improved by enforcing stricter ways of knowledge representation.
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11
What Architects Do and What They Need

In this chapter we present the results of a survey conducted in four IT organizations in

the Netherlands, to which almost 279 practicing architects participated. This study’s

main goal is to unravel what architects really do and what kind of support they need

for sharing architectural knowledge. Our survey validates a theory that was formed

based on state-of-the-art literature as well as on insights gained during the four case

studies conducted at RFA.

11.1 Introduction

Over the past few years, an increasing emphasis is put on the role of decision making

in the software architecting process. Consequently, the role of the architect in this

process is a frequently recurring topic of discussion, and more and more researchers

and practitioners deliberate on what a proper set of duties, skills and knowledge of

architects would be (Clements et al., 2007). In addition, researchers have proposed

various tools to support the architect, who is characterized as an all-round knowledge

worker. Such a knowledge worker, as these researchers argue, would definitely benefit

from specific support for managing design decisions, modeling architectural solutions,

or related activities that can be automated. With such support relevant architectural

knowledge is easier to share, which leads to more effective knowledge exchange and

reuse, and which prevents knowledge vaporization.

There are various approaches to support architects in sharing architectural knowl-

edge. In practice, however, the adoption of these approaches is limited, perhaps due

to a lack of alignment to the architecting process. We found that these approaches are

often developed from a technological perspective alone (cf. Chapter 8). To keep from

falling into this so-called ICT trap (Huysman and de Wit, 2004) we wish to find out
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what support for architectural knowledge sharing best fits the architecting process.

The only way to understand what would really benefit architects, is to unravel what

architects really do and what kind of support they need during their main activities,

which corresponds to answering research questions RQ-II.2 and RQ-II.3. For this pur-

pose, we have constructed a theory on architecting, based on a review of state-of-the-

art literature and experiences gained during the four case studies conducted at RFA.

Our theoretical framework consists of a number of identified architecting activities and

a number of support methods that assist architects in sharing architectural knowledge

during these activities. Further, we hypothesize the existence of a number of ‘patterns’:

certain methods for sharing architectural knowledge are more supportive than others to

architects involved in a specific activity. The identification of such patterns helps in the

development and maturation of methods and tools for sharing architectural knowledge.

In this chapter we report on the fifth and final study of our action research cycle that

aimed to validate aforementioned theory. To validate our theory we have conducted

large-scale survey research in four IT organizations in the Netherlands. In total 279

practicing architects were asked about their daily activities, and how important they

consider the various types of support for sharing architectural knowledge. Our study

consisted of a pilot study to pretest the theoretical framework, followed by a main study

to answer our research questions and hypotheses.

The remainder of this chapter is organized as follows. In §11.2 we outline our the-

ory on architecting activities and support methods for architectural knowledge sharing.

In §11.3 we elaborate upon the research methodology of our study. §11.4 presents our

data analysis to validate the theory. In §11.5 we reflect on the results and discuss their

implications.

11.2 Theoretical framework

Based on experiences in earlier industrial case studies, combined with established lit-

erature on software architecture and knowledge management, we developed a theory

to characterize what architects do and what they need for sharing architectural knowl-

edge. In the next three subsections we outline our theory on what kind of activities

architects are involved in (§11.2.1), what kind of support they need (§11.2.2), and what

patterns between support and activities exist (§11.2.3).

11.2.1 Architecting activities

Our theory of architecting activities is depicted in Table 11.1 and consists of five cat-

egories: communication, decision making, quality assessment, documentation, and
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knowledge acquisition. For each activity we defined several subactivities that are most

indicative to its activity, which was tested by our online survey. The remainder of this

section highlights some of the related work our theory was built on.

According to Kruchten (2008), software architects should “make design choices,

validate them, and capture them in various architecture related artifacts”. Doing all

these things involves a lot of consensus decision making in which architects balance

between quality attributes, stakeholder concerns, and requirements, and in which they

Table 11.1: Architecting activities

A1: Communication

- I inform colleagues about the results of my work.

- My colleagues keep me up-to-date on the results of their work.

- I explain existing architectural principles to colleagues.

- During discussions I share my knowledge to colleagues.

A2: Decision Making

- Before I take a decision I weigh the pros and cons of possible solutions.

- While taking decisions I meet the wishes of the stakeholders.

- I think about what impact my decisions have on the current architecture.

- I study the reasoning behind taken design decisions.

- I convince stakeholders in order to share the architectural vision.

- I convince stakeholders about the value of my architectural solution.

- Stakeholders approach me to discuss about architectural issues.

- I notify stakeholders about actions that deviate from the architecture.

- I check whether proposals from stakeholders are in line with the

architecture.

- I judge whether architectural proposals could continue or be executed.

A3: Quality Assessment

A4: Documentation

A5: Knowledge Acquisition

- I create documents that describe architectural solutions.

- I use (parts of) existing documents while creating new deliverables.

- I use templates to store architectural knowledge.

- I write vision documents to inform stakeholders.

- I write progress reports about the architecture to stakeholders.

- I learn from my colleagues about architectural principles.

- Colleagues learn from me about architectural principles.

- I read (scientific/professional) literature on architecture.

- I keep my knowledge up-to-date by searching relevant information 

on Intranet or Internet.

- I expand my knowledge by visiting conferences and other events 

about architecture.
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try to apply architectural styles and patterns.

A study by Clements et al. (2007) on the duty, knowledge, and skills of architects

confirms the above view of the primary tasks of architects. They found that architects

frequently interact with stakeholders, are involved in organization and business related

issues, but primarily guide the architecting process: “We realized, from our many inter-

actions with practicing architects, that their job is far more complex than just making

technical decisions, although clearly that remains their most essential single duty”.

In the decision making process architects communicate and share ideas with vari-

ous stakeholders and collaborate in teams to find optimal solutions (cf. Chapter 8). To

keep track of all knowledge being created or shared in this process, architects main-

tain a backlog (Hofmeister et al., 2007). In this backlog, an overview of decisions,

constraints, concerns, open issues etc. are maintained by the architect. As input to this

process, architects need a vast body of architectural knowledge. According to Clements

et al. (2007) this body of knowledge includes basic computer science knowledge, de-

sign knowledge, and knowledge about organizational context and management. Archi-

tects share this knowledge not only by talking to colleagues in their team, but also by

communicating with stakeholders outside the team.

That architecting is not only about technology is also illustrated by an architect

competency list proposed by Bredemeyer and Malan (2004). These competencies are

classified in the categories technology, consulting, strategy, organizational politics, and

leadership. Bredemeyer’s vision is further underlined by Eeles (2006b), who acknowl-

edges that architects do not only do technical stuff (‘they are a technical leader’, ‘they

understand the development process’) but that they also need a lot of soft skills: Ar-

chitects ‘have knowledge of the business domain’, ‘are good communicators’, ‘make

decisions’, ‘are aware of organizational politics’, and ‘need to be effective negotia-

tors’. Soft skills are also emphasized by van der Raadt et al. (2008), who studied how

different stakeholders in the Enterprise Architecture domain perceive the enterprise ar-

chitecture function. Apart from technical knowledge or skills, enterprise architecture

involves to a large extent governance, communication, vision, and collaboration.

Another main architecting activity is to document architectural knowledge. This in-

cludes not only storing application-generic knowledge such as architectural principles,

patterns or styles, but also codifying application-specific knowledge such as design

decisions made and their rationale. Architectural knowledge may be stored in archi-

tectural descriptions or databases, modeled in reference architectures, or grouped in

specific repositories.

During the 2006 and 2007 workshops on sharing and reusing architectural knowl-

edge (SHARK) an explicit distinction was made between architecting as a product and

as a process (Lago and Avgeriou, 2006; Avgeriou et al., 2007b). During these sessions

a classification scheme for architecting as a process was constructed. This scheme
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adds two important architecting activities to the decision making, documenting and

communication activities: learning and assessing. With respect to learning, Clements

et al. (2007) list university or industrial courses, and certification programs as possi-

ble sources of training and education for architects. Apart from these specific learning

activities, in their everyday work architects are also constantly busy with knowledge ac-

quisition activities to update their knowledge. By having discussions with colleagues

or customers, reading fora on the internet, or by visiting seminars, workshops or con-

ferences they stay up-to-date and become acquainted with new trends, developments

or best practices.

The last main architecting activity we define is assessing the quality of architec-

tures. Assessing and reviewing architecture descriptions or related deliverables allow

architects to control quality. They are ultimately responsible for the quality of the soft-

ware systems. The design and evolution of an architecture allows them to reach this

goal. As part of the quality control, architects also prescribe certain rules and regu-

lations to stakeholders in the projects they work on. Stakeholders need to adhere to

these rules, and architects may reject deviations from these rules by overruling specific

decisions made.

11.2.2 Support methods

We also wanted to know the kind of support architects require with respect to shar-

ing architectural knowledge. Effective support for sharing architectural knowledge is

crucial, not only to assist individual architects, but also to improve the quality of ar-

chitectural designs by leveraging all knowledge assets available in the organization.

Table 11.2 shows our theory of support methods for sharing architectural knowledge

(i.e., decision management, search efficiency, community building, intelligent advice,

and knowledge management). The indicative sub-methods listed in this table served as

items on our survey.

In the previous section we have seen that architects communicate, make decisions,

assess quality, document and acquire knowledge, all of which are highly knowledge-

intensive activities. In this subsection we outline out thoughts on the main areas support

methods for sharing architectural knowledge should focus on.

A large part of the architectural knowledge produced is related to the design de-

cisions, so that explicit support for management of these decisions is warranted. Re-

cently, various researchers have proposed tools that help managing concepts like design

decisions, rationale, and related architectural knowledge (Ali Babar and Gorton, 2007;

Capilla et al., 2007; Jansen et al., 2007). These tools include specialized templates,

overviews and storage facilities for architectural knowledge concepts. Such support

for management of design decisions could help architects involved in decision making.
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Table 11.2: Support methods

S1: Decision Management

S2: Search Efficiency

S3: Community Building

S4: Intelligent Advice

S5: Knowledge Management

- An overview of the most important architectural decisions.

- An overview of the relations between taken decisions.

- Templates for codification of architectural decisions.

- Insight into conflicts between architectural decisions.

- An overview of changes through time of certain decisions.

- A repository to store architectural decisions.

- Search methods for existing architectural guidelines.

- Retrieving all documentation related to a specific architectural subject.

- Search facilities for decisions within a specific project.

- Retrieving relevant information within a project.

- Overview of important events related to architecture.

- A central system to hold discussions with stakeholders.

- Notify colleagues about relevant documentation.

- A central environment to collaborate with colleagues on arch. issues.

- Retrieve information about the expertise of colleagues.

- Acquire insight into which architectural projects colleagues worked on.

- Concrete feedback during the writing process of arch. documentation.

- Specific advices on which architectural decisions need to be taken.

- Suggestions on how to use architectural guidelines in a specific project.

- Being notified about the availability of new architectural publications.

- Being sent an overview of the status of an architectural project.

- Automatic retrieval of architectural guidelines within projects.

- Simple methods to annotate architectural knowledge concepts in

documents with meta-data.

- A automatically generated overview of open design issues in

documents.

- A system that tracks overlap among codified architectural guidelines.

- Central maintenance of architectural guidelines and best practices.

While working on the ‘backlog’ of open issues and challenges they can organize their

thought processes and manage the architectural knowledge they produce (Hofmeister

et al., 2007).

In addition to assisting architects in producing architectural knowledge, support

during the consumption of such knowledge is equally important. The need for a more

balanced view on architectural knowledge sharing, in which support for both producing

and consuming architectural knowledge is included, has been discussed before (Lago

and Avgeriou, 2006). During the third case study at RFA it became clear that one of the
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main requirements architects have is support in retrieving the right architectural knowl-

edge at any time (cf. Chapter 9). Support for efficient searching of architectural knowl-

edge will stimulate reuse (reusable assets are better accessible) and learning among

architects (they can find what they need more easily).

Due to the size and complexity of most software systems, it is often infeasible for

one architect to be responsible for everything alone. This focus on teamwork is espe-

cially true in global software engineering environments. Consequently, the architect-

role is often fulfilled by multiple collaborating architects. Liang et al. (2009) provide

an introduction to how a collaborative architecting process would look like. To foster

sharing of architectural knowledge between all these architects calls for support meth-

ods that focus on community building. We found during the fourth case study at RFA

that ‘islands’ of practitioners can exist that work relatively independent from each other

(cf. Chapter 10).

Architects often do not know what experienced colleagues from other teams work

on, what their experience or expertise is, or what their interests are. We argue that

support for community building improves this situation and increases the amount of

architectural knowledge shared. With the advent of ‘Web 2.0’, this is much easier to

implement than in the past. The need for systems that enable such support was expli-

cated in Chapter 8 where we presented EAGLE. Likewise, as discussed in Chapter 10,

systems such as Wikis can be employed to improve networking by letting stakeholders

share ideas, discuss progress, or collaboratively produce architectural knowledge in a

variety of formats.

Another main type of support in the architecting process relates to intelligent ad-

vice and support. Architects could benefit from intelligent support during almost all

their core activities: a) during production activities such as writing an architectural

description, b) directly after producing architectural knowledge (in terms of feedback

on what they did), and c) during reviewing and evaluation activities. Intelligent or

pro-active support helps architects to leverage and share the architectural knowledge

assets available by taking over certain tasks. This might result in a software assistant

who thinks together with the practitioners and suggests ideas, challenges decisions, etc.

Implementations of pro-active and intelligent assistants are not often seen in practice

yet. In a research setting, examples start to emerge. One example is provided by Gar-

lan and Schmerl (2007), who designed a personal cognitive assistant called RADAR,

which could help architects to accomplish their high-level goals, coordinating the use

of multiple applications, automatically handling routine tasks, and, most importantly,

adapting to the individual needs of a user over time. Another example is the Knowledge

Architect tool suite that, among other things, assists architects in writing documenta-

tion, and that can perform quantitative architectural analysis (Liang et al., 2009).

The last type of support we envision is advanced management of architectural
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A4. Documentation

A5. Knowledge Acquisition

A2. Decision Making

A1. Communication

A3. Quality Assessment

Architecting activities

S1. Decision Management

S2. Search Efficiency

S3. Community building

S4. Intelligent Advice

S5. Knowledge Management

P6

Support methods

P1

P2

P3

P4

P5

Figure 11.1: Hypothesized patterns of architectural knowledge sharing support

knowledge that includes refinement, enrichment and smart overviews of such knowl-

edge. Architects could benefit from (semi)-automatic interpretation of stored knowl-

edge to enrich it. Text mining services (e.g., (Fan et al., 2006)) could be employed to

automatically sift through existing architectural knowledge stored (e.g., in a database)

looking for new patterns, define best practices, or locate trends. Based on the findings,

additional meta-data could be generated and presented to the architect. Consequently,

searches executed could deliver more in-depth results that can then be shared, because

part of the interpretation of the ‘raw’ architectural knowledge has already been done.

11.2.3 Architectural knowledge sharing patterns

Table 11.1 and Table 11.2 show the factors in our theory on architecting activities

and support for architectural knowledge sharing, respectively. We hypothesized that

specific support might be more appreciated during specific architecting activities. This

means that certain ‘patterns’ exist that describe which type of support fits which type

of architecting activity best.

We hypothesized that six of such patterns exist, as depicted in Fig. 11.1. For each
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pattern we formulated a hypothesis that was tested with our survey.

P1 Architects involved in taking architectural decisions (A2) benefit particularly

from support for management of architectural decisions (S1). We argue that

practitioners who are often involved in decision-making could benefit greatly

from explicit support for working on a decision ‘backlog’, by having overviews

of open issues, conflicting decisions, traces between requirements and solutions,

etc.

P2 Architects involved in taking architectural decisions (A2) benefit particularly

from support for intelligent advice (S4). We argue that during the thought pro-

cesses and tradeoffs inherent to decision making, pro-active or Just-in-Time sup-

port might benefit architects greatly. This could include (automated) advice on

which decisions to take in a specific situation, or tips about how to apply archi-

tectural patterns, styles or tactics.

P3 Architects involved in documenting architectural knowledge (A4) benefit partic-

ularly from support for maintenance and overview of architectural knowledge

(S5). Architects who are often involved in codifying knowledge in artifacts such

as architectural descriptions are directly helped by templates, models, frame-

works etc. Also easy access to other codification methods such as central reposi-

tories for guidelines and repositories lower the threshold of producing something

and eases the storing process.

P4 Architects involved in communication with colleagues or other stakeholders (A1)

benefit particularly from support for community building (S3). We expect archi-

tects who are frequently involved in communication with colleagues or other

stakeholders to be more enthusiastic about community building, sharing knowl-

edge, and networking using for example social networks (e.g., wikis, blogs).

After all, methods such as people directories, yellow pages, but also discussion

facilities are more interesting for people that often use them and also lead to

greater benefits than when there is less collaboration with others.

P5 Architects involved in quality assessments (A3) benefit particularly from support

for efficient retrieval of (or searching for) architectural knowledge (S2). Dur-

ing reviews and assessments quickly retrieving information about the status of

a project, the set of principles applied, or the key architectural decisions taken

greatly benefit architects. This would also lead to higher-quality results during

the evaluation, because it is based on more accurate and complete architectural

knowledge.
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P6 Architects involved in expanding their knowledge on architecture (A5) benefit

particularly from support for efficient retrieval architectural knowledge (S2). Ar-

chitects could learn more effectively (i.e., faster, more to-the-point) if they have

the means to quickly retrieve the architectural knowledge they need at a specific

point in time. Just-in-Time architectural knowledge allows them to quickly find

new domain knowledge, get the status of a project, or read through the main de-

liverables of a project. To put it differently, by having good support for retrieving

such knowledge, the practitioner can enrich and refine the knowledge himself by

combining inputs from different sources, so that the knowledge internalization

process is significantly improved.

11.3 Research Methodology

In total 279 Dutch architects from four IT organizations were included in this research.

These organizations include:

1. RFA, the software development organization in which we conducted the four

case studies presented in the previous chapters.

2. SCI, an international consultancy firm specialized in infrastructure and mainte-

nance of software systems.

3. SOT, an international IT Service Organization for consulting, system integration

and managed operations.

4. OBG, a central Dutch governmental organization for the governance of ICT ar-

chitectures in the public domain.

Our study is conducted according to a structured design, which is elaborated upon

in the remainder of this chapter. Our research methodology includes all important

elements required to properly design, administer and analyze a survey (Kitchenham

and Pfleeger, 2001-2002). Our survey consists of a pilot study, followed by the main

study, both of which are further highlighted in the following sections. For a complete

discussion we refer to the technical report written about this study (Farenhorst et al.,

2009).

11.3.1 Pilot study

The theoretical framework presented in §11.2 is not something we built up overnight.

An earlier theory consisting of six categories of architecting activities and six different
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support methods was presented in (Farenhorst and van Vliet, 2009). The main goal of

the pilot study was to see whether this earlier theory was sufficiently strong for usage in

the main study, and to improve – or refactor – it where necessary. To this end, we made

constructs for all activities and support methods. Inspired by relevant literature and

gained insight during the four case studies conducted at RFA, we formulated 10 to 15

questions (i.e., ‘items’) for each of these constructs. After iteratively scrutinizing these

items on clarity and redundancy, some were removed, leaving each construct between

5 and 10 items.

Because 10 items per construct would make the questionnaire of the main study too

long, we decided to let a small percentage of the total sample (N = 8) pretest all items

in a pilot questionnaire. To test the internal consistency of the items we performed

reliability analysis on the item scores of the pilot questionnaire, and selected the ones

with the strongest internal consistency (i.e., highest Cronbach’s alpha).

To make sure that items did not indicate other activities or support methods as well,

we performed factor analysis. This way we could sharpen our concepts. To give an

example, in our earlier theory we made a distinction between communication within a

team (with colleagues) and communication outside the team (with other stakeholders).

However, the factor analysis of the pilot questionnaire indicated that this distinction is

not made by architects; the items of both constructs all mapped on one factor. Conse-

quently, we merged these two constructs and labeled the new one ‘Communication’.

This is why our final theory of architecting activities (Table 11.1) contained five cate-

gories and not six. In a similar fashion, we refactored our theory of support methods.

Coincidentally, again we had to change the theory by going from six to five constructs.

For each of these constructs the five or six most explanatory items were selected, as

depicted in Table 11.2.

11.3.2 Main study

In our main study we tested our theoretical framework as presented in §11.2. To prop-

erly answer our main research question, which involved unraveling what architects do

and what support they need, the questionnaire of our main study consisted of three

parts:

∙ Part 1: Architecting activities. Each of the five architecting activities was

treated as a separate scale, consisting of the (four to six) items as depicted in

Table 11.1. Each item described a sub-activity (e.g., ‘I inform colleagues about

the results of my work’) and respondents replied to what extent that activity re-

lated to their daily work by scoring a 6-point Likert-type rating scale (1 = totally

disagree, 6 = totally agree).
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∙ Part 2: Support methods. Each of the five support methods for sharing archi-

tectural knowledge was treated as a separate scale, consisting of the (five to six)

items representing sub-methods, as depicted in Table 11.2. Respondents indi-

cated on 6-point Likert-type rating scales to what degree these support methods

were helpful in their daily work. A sample item was ‘In my daily work, I benefit

from an overview of the most important architectural decisions’

∙ Part 3: Prioritization of support methods. The respondents prioritized the

five types of support methods in order of importance for one particular activity

alone. They ranked the five methods between 1 and 5, where a score of ‘1’

corresponded to the highest ranked method and ‘5’ corresponded to the lowest

ranked method for that architecting activity. We made sure that no score could

be given twice and that no missing values were allowed.

In addition to the questions of the three parts, our (anonymous) questionnaire con-

tained some additional questions including the respondent’s role (which ‘type’ of ar-

chitect), and his or her experience (number of work years). This allowed us to analyze

the impact of these additional factors on respectively the architecting activities they are

involved in (Part 1), the support methods they like (Part 2) and their prioritization of

those support methods (Part 3).

To prevent bias and fatigue effects we also randomized the order of the question

screens of Part 1 and Part 2 as much as possible. We have constructed the following

experimental design to accommodate for these requirements:

∙ We split up the sample in 5 equally large homogeneous groups of architects.

Each of these groups got a different questionnaire. Of these 5 questionnaires

Part 1 and Part 2 were identical, except for the ordering of the screens. The

difference was in Part 3: each questionnaire only contained ‘one’ prioritization

question, i.e., selected one architecting activity and asked the architects to pri-

oritize the support methods for this activity. This prevented too much repetition

(and possible contaminated results), which would have occurred if the same re-

spondent had to rank the same methods five times, once for each activity (Hoorn

et al., 2006).

∙ To verify whether the ordering of the screens in Part 1 and Part 2 did not lead to

a bias in how the support methods in Part 3 were ranked, we made two versions

for each of the 5 groups mentioned above. Each of these versions had a distinct

ordering of the question screens, as is depicted in Table 11.3. So in the end the

respondents were divided equally over 10 questionnaires (Q1-Q10), but as soon

as the test for bias had turned negative,five bigger groups could be formed again

(by combining Q1+Q6, Q2+Q7, etc.).
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Part 1: Part 2: Part 3:

Architecting activities Support for AK sharing Prioritize support

Quest. Act1 Act2 Act3 Act4 Act5 Sub1 Sub2 Sub3 Sub4 Sub5 Ranking question

Q1 1 2 3 4 5 1 2 3 4 5 Act1

Q2 1 2 3 4 5 1 2 3 4 5 Act2

Q3 1 2 3 4 5 1 2 3 4 5 Act3

Q4 1 2 3 4 5 1 2 3 4 5 Act4

Q5 1 2 3 4 5 1 2 3 4 5 Act5

Q6 5 4 3 2 1 5 4 3 2 1 Act1

Q7 5 4 3 2 1 5 4 3 2 1 Act2

Q8 5 4 3 2 1 5 4 3 2 1 Act3

Q9 5 4 3 2 1 5 4 3 2 1 Act4

Q10 5 4 3 2 1 5 4 3 2 1 Act5

Table 11.3: Experimental design: Different versions of the same questionnaire

∙ Finally, all questions in the screens of Part 1 and Part 2 were randomized, which

means that they were posed to each respondent in a different order.

∙ All respondents start from the same introduction screen in the web survey tool

Examine 1, but as soon as they start with the actual questionnaire, the ‘exper-

imental design’ feature of Examine redirects the respondent to one of the ten

versions (Q1-Q10). The advantage of this approach is that there is only one link

to our (anonymous) questionnaire, which was thus easy to place in the invitation

emails send out in the four participating organizations.

11.4 Survey Analysis

Our main study was conducted in February 2009 at the four IT organizations in paral-

lel. In total 271 architects from these organizations were included in the main study,

156 of whom responded (see Table 11.4). From this group, 13 were discarded in the

analysis because their records were completely empty. One respondent was removed

from the analysis because s/he produced scores of ‘1’ alone. This left us with 142

respondents for the scale and factor analysis, which accounts for a response rate of

52.4%. Remaining missings were treated as subject-missing.

From the 142 respondents, 48 labeled themselves as Enterprise architects, 63 as IT

or software architect, and the remaining ones (31) were either information analysts, in-

frastructure architects, or application designers. Their average relevant working expe-

1http://examine.vu.nl/
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Table 11.4: Response rate

Organization Sample Responses Response rate

RFA 56 42 75,0%

SCI 39 20 51,3%

SOT 171 76 44,4%

OBG 5 4 80%

Total 271 142 52,4%

rience was 6 years; 26 architects indicated less than 3 years of architecting experience,

89 architects 5 years or more.

11.4.1 Scale analysis

To assess whether our data was internally consistent and that the items were really

indicative for the constructs of our descriptive framework, we started with conduct-

ing scale analysis. To this end, we assessed the psychometric quality of the 5 Ac-

tivity scales (Communication, Decision Making, Quality Assessment, Documentation,

Knowledge acquisition) and the 5 Support scales (Decision Management, Search Ef-

ficiency, Community Building, Intelligent Advice, Knowledge Management). Scales

had between 4 and 6 items each. We tested whether items correlated sufficiently with

their own scale by means of Corrected Item-Total Correlations and regular Cronbachs

alpha (indicating reliability).

Item selection was a trade-off among several criteria. We wanted to establish as

many items on a scale as possible with a minimum of 2, provided that Cronbachs alpha

for a scale was ≥ .60 and Corrected Item-Total Correlations ≥ .20. In addition, the de-

gree to which items did not correlate with other scales was tested with factor analysis,

one time for the Activities scales and one time for the Support scales (PCA, 25 itera-

tions Varimax rotation with Kaiser Normalization, number of factors to be extracted:

5). The rotated component matrix showed that all five factors could be retrieved in the

data, except for a limited number of items. We removed 8 items that correlated more

strongly with another scale than with their own scale. Three more items were removed

that correlated above .40 with other scales irrespective of high correlations with their

own scale. In Table 11.5 the resulting set of items is depicted.

The thus revised scales were submitted to reliability analysis again. Scale length

was reduced to 3, 4, or 5 items. Regular Cronbach’s alphas were between .72 and

.90, which is reasonable to good. The scale Knowledge Acquisition had an alpha of

.61, which is suspect but still acceptable. In Table 11.6 the reliability analysis with
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Table 11.5: Selected items after reliability analysis

A1: Communication

- I inform colleagues about the results of my work.

- My colleagues keep me up-to-date on the results of their work.

- I explain existing architectural principles to colleagues.

- During discussions I share my knowledge to colleagues.

A2: Decision Making

- Before I take a decision I weigh the pros and cons of possible solutions.

- I think about what impact my decisions have on the current architecture.

- I study the reasoning behind taken design decisions.

- I convince stakeholders about the value of my architectural solution.

- Stakeholders approach me to discuss about architectural issues.

- I notify stakeholders about actions that deviate from the architecture.

- I check whether proposals from stakeholders are in line with the

architecture.

- I judge whether architectural proposals could continue or be executed.

A3: Quality Assessment

A4: Documentation

A5: Knowledge Acquisition

- I use (parts of) existing documents while creating new deliverables.

- I use templates to store architectural knowledge.

- I write vision documents to inform stakeholders.

- I write progress reports about the architecture to stakeholders.

- I read (scientific/professional) literature on architecture.

- I keep my knowledge up-to-date by searching relevant information 

on Intranet or Internet.

- I expand my knowledge by visiting conferences and other events 

about architecture.

S1: Decision Management

S2: Search Efficiency

S3: Community Building

S4: Intelligent Advice

S5: Knowledge Management

- An overview of the most important architectural decisions.

- An overview of the relations between taken decisions.

- Templates for codification of architectural decisions.

- Insight into conflicts between architectural decisions.

- An overview of changes through time of certain decisions.

- Search methods for existing architectural guidelines.

- Retrieving all documentation related to a specific architectural subject.

- Search facilities for decisions within a specific project.

- Retrieving relevant information within a project.

- A central system to hold discussions with stakeholders.

- Notify colleagues about relevant documentation.

- A central environment to collaborate with colleagues on arch. issues.

- Retrieve information about the expertise of colleagues.

- Specific advices on which architectural decisions need to be taken.

- Suggestions on how to use architectural guidelines in a specific project.

- Being sent an overview of the status of an architectural project.

- Automatic retrieval of architectural guidelines within projects.

- Simple methods to annotate architectural knowledge concepts in

documents with meta-data.

- A automatically generated overview of open design issues in

documents.

- A system that tracks overlap among codified architectural guidelines.

Table 11.6: Reliability analysis with shortened scales after factor analysis

Scale  !"#$%&'()*+ # items n

Communication .80 4 132

Decision making .85 3 131

Quality assessment .80 5 128

Documentation .72 4 131

Knowledge 

acquisition

.61 3 136

Decision 

management

.80 5 123

Search efficiency .83 4 123

Community building .78 4 123

Intelligent advice .74 3 123

Knowledge 

management

.90 5 122

shortened scales after factor analysis is depicted.

189



CHAPTER 11. WHAT ARCHITECTS DO AND WHAT THEY NEED

11.4.2 What architects do

To find out what practicing architects really do we studied the data of Part 1 of our

questionnaire. We ran a GLM-Repeated Measures for the 5-leveled within-subjects

Activities factor (Communication, Decision Making, Quality Assessment, Documen-

tation, Knowledge Acquisition) on the mean agreement scores with number of work

years as covariate. According to the multivariate tests, the main effect of Activities

was significant with a considerable effect size (Pillai’s Trace = .51, F(4,121) = 31.4,

p = .000, �2p = .51). See (Farenhorst et al., 2009) for more details.

As depicted in the upper part of Table 11.7, the activity Decision Making received

the highest agreement scores (� = 5.21, � = .65) and Documentation the lowest

(� = 3.98, � = .89). Analysis of variance showed that these results were not sig-

nificantly different between the four participating organizations, nor did the type of

architect impact this outcome. We did, however, find a significant correlation between

the amount of work experience architects have and the activities they are involved in.

Particularly, agreement to Quality Assessment and Documentation increased signifi-

cantly with the number of Work Years (see (Farenhorst et al., 2009)).

Paired-samples t-tests showed that all differences among the activities were sig-

nificant (t > 2.7, p < .009), except for the contrast between Communication and

Knowledge Acquisition (t125 = −.38, p >> .05). However, these effects were mod-

Table 11.7: Descriptive statistics for activities and support methods

Mean Std. Deviation
Correlation with 

Work Years N

Work years (experience 
in architecture projects)

Architecting activities

6.22 4.110 142

Communication 4.6155 .67423 .20* 132

Decision Making 5.2087 .65285 .18* 131

Quality Assessment 4.4484 .82204 .37** 128

Documentation 3.9847 .89052 .23** 131

Knowledge Acquisition

Support methods

4.6152 .74135 .15 136

Decision Management 4.8374 .58188 .15 123

Search Efficiency 4.8943 .60902 .09 123

Community Building 4.5325 .74586 .10 123

Intelligent Advice 4.5230 .64030 .10 123

Knowledge Management 4.3033 .90077 .15 122

Hotelling's Trace
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ulated by the number of work years that respondents worked on architectural projects

(� = 6.22 years, � = 4.11). The interaction between Activities and Work Years was

significant albeit with small effect size (Pillai’s Trace = .09, F(4,121) = 2.9,p = .026,

�2p = .09). Further inquiry with Pearson correlations into the relationship between

this covariate and the different Activities showed that particularly agreement to Qual-

ity Assessment and Documentation increased significantly with the number of Work

Years. This was also the case for Communication and Decision Making but not for

Knowledge Acquisition.

Our survey results thus indicate that interestingly enough, from the five architect-

ing activities, architects are mostly busy with taking architectural decisions and least

with documenting the results. This runs the risk of leading to substantial architec-

tural knowledge vaporization (Bosch, 2004) and substantially decreases the chances

for effectively reusing architectural knowledge. The effect of work experience indi-

cates that more experienced architects seem more often involved in auditing activities,

and – maybe related to this – spend more energy on documenting their results. Maybe

the advantages of retrieving or reusing codified knowledge has proven itself to these

experienced architects over the years.

11.4.3 What architects need

To examine what kind of support methods architects desire, we studied the data of Part

2 of our questionnaire. We ran a GLM-Repeated Measures for the 5-leveled within-

subjects Support factor (Decision Management, Search Efficiency, Community Build-

ing, Intelligent Advice, and Knowledge Management) on the mean agreement scores

with Work Years as covariate. The main effect of Support was significant with medium

to low effect size (Pillai’s Trace = .21, F(4,117) = 7.7, p = .000, �2p = .21). Again,

see (Farenhorst et al., 2009) for more details.

As depicted in the lower part of Table 11.7 Search Efficiency raised the highest

agreement scores (� = 4.89, � = .61) and Knowledge Management the lowest (� =
4.30, � = .90). Again, analysis of variance showed no significant differences between

types of architects or between architects from different organizations. The interaction

between Support and Work Years also was not significant (F < 1).

To further explore the main effect of Support, paired-samples t-tests showed that

all differences among the kinds of Support were significant (t > 2.7, p < .008), except

for the contrast between Decision Management and Search Efficiency (t122 = −.38,

p >> .05) and between Community Building and Intelligent Advice (t122 = .15,

p >> .05). This means that Search Efficiency and Decision Management were equally

agreed upon as the kind of support most needed, irrespective of Work Years.

We find it rather contradictory that although architects do not document much, these
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results indicate that they do wish for efficient support to retrieve useful – previously

stored – knowledge. It seems that architects really wish to use codified knowledge,

but refrain from codifying it in the first place. A proper balance between producing

and consuming architectural knowledge, as deemed important in (Lago and Avgeriou,

2006), is lacking.

Another surprise related to architects’ opinion about the various support methods

is indicated by the low score for Knowledge Management. Considering that architects

make a lot of decisions but are not that eager to properly document them, we expected

that they would be more enthusiastic about automated support for these activities. One

would say that easy annotation of architectural knowledge in documents would make

the codification tasks a little less cumbersome. Yet, architects do not fancy such pro-

active, or automated support. Perhaps they wish to remain in the driver’s seat, and

do not trust a system that manipulates and processes architectural knowledge inde-

pendently. This is in line with an earlier study that indicated that one of the desired

properties for architectural knowledge sharing support we identified in Chapter 8.

11.4.4 Preferences in support methods

We examined which support methods architects prefer by conducting two separate

analyses: a) we tested the patterns hypothesized in Fig. 11.1 by trying to retrieve them

in the data of Part 1 and Part 2 of our questionnaire, and b) we examined the ranking

data of Part 3.

For our first analysis we formulated six regression models in which the level of

agreement to activities should predict the level of agreement to the kind of support

needed (see Fig. 11.1): A1 → S3, A2 → S1, A2 → S4, A3 → S2, A4 → S5,

A3&A5 → S2. Linear regression analysis confirmed the hypotheses formulated for

patterns P1, P2, and P5. In each case the corresponding activity explained to a consid-

erable extent the variance in agreement to the specific support methods:

P1 Decision Making explained 25% of the variance in Decision Management (P1).

This means that architects who make decisions are particularly in favor of deci-

sion management. This is in line with our assumption that backlog management

and effective management of design decisions makes it easier for architects to

have a proper overview of the solution space, reusable assets, potential conflicts,

stakeholder demands, etc.

P2 Decision Making explained 19% of the variance in Intelligent Advice (P2). This

means that intelligent advice such as specific advice on which design decision

to take, or suggestions about which architectural guidelines or styles to use, is

particularly helpful for architects who are busy taking design decisions.
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P5 Quality Assessment explained 34% of the variance in Search Efficiency (P5).

Retrieving architectural knowledge is important for architects, particularly when

they are conducting audits or other quality evaluations. Apparently, to decide

about the quality of an architecture it is important to quickly retrieve the stan-

dards, rules, etc. that need to be adhered to.

The other three patterns were rejected, because in these cases the activities did not

significantly explain the variance in agreement to the corresponding support methods.

Apparently, advanced Knowledge Management support is not particularly important

to architects busy with Documentation (P3), Community Building is not particularly

interesting to architects active in Communication (P4), and Search Efficiency is not

particularly appreciated by architects busy with Knowledge Acquisition (P6).

For our second analysis we looked at the data of Part 3 of the survey, where the re-

spondents ranked the five support methods. They did so for one activity alone, so that

a 5-leveled between-subjects factor of Activity Ranking Condition could be created

(Communication Condition, Decision Making Condition, Quality Assessment Condi-

tion, Documentation Condition, Knowledge Acquisition Condition). We ran a GLM-

Repeated Measures for the between-subjects factor Activities Ranking Condition and

the 5-leveled within-subjects factor of Ranked Support (Ranked Decision Management,

Ranked Search Efficiency, Ranked Community Building, Ranked Intelligent Advice,

and Ranked Knowledge Management) on the mean rank numbers with Work Years as

covariate (see (Farenhorst et al., 2009) for more details).

However, the main effect of Work Years was not significant (F < 1) and the in-

teraction between Ranked Support and Work Years also was not significant (F < 1).

Therefore, we reran the analysis but this time excluding Work Years as covariate.

The multivariate tests showed that the interaction of Ranked Support by Activity

Ranking Condition was not significant (F < 1) and that the main effect of Activity

Ranking Condition on the mean rank numbers also was not significant (F < 1). How-

ever, the main effect of Ranked Support did reach significance with a small effect size

(Pillai’s Trace = .12, F(4,112) = 3.8, p = .006, �2p = .12). Keeping in mind that the

lower rank order number indicates the higher priority, Table 11.8 shows that accord-

ing to the architects, Ranked Decision Management (� = 2.63, � = 1.37) had higher

priority than Ranked Intelligent Advice had lowest priority (� = 3.33, � = 1.42).

Paired-samples t-tests showed that five out of 10 comparisons among the Ranked

Support options were significant, which means that the need for support is a sliding

scale of priorities (see Table 11.9).

In combining and interpreting Table 11.8 and Table 11.9, we get to a hierarchy of

support methods that are more or less needed for architecting activities. The lower rank

numbers indicate the higher priority. According to these architects, Decision Manage-
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ment had highest priority and Intelligent Advice lowest, irrespective of the activities

they are involved in.

Priority of need for support throughout all architecture activities:

∙ Most needed: Decision Management (� = 2.63), Search Efficiency (� = 2.8)

∙ Needed: Knowledge Management (� = 2.91), Community Building (� = 3.28)

∙ Least needed: Intelligent Advice (� = 3.33)

Table 11.8: Descriptive statistics for the effects of activities on ranked support

Activity for which support 
options were ranked Mean Std. Deviation N

Ranked Decision 
Management Communication 2,78 1,166 23 

Decision Making 2,54 1,474 24 

Quality Assessment 2,75 1,351 28 

Documentation 2,76 1,338 21 

Knowledge Acquisition 2,29 1,517 24 

Total 2,63 1,366 120 

Ranked Search Efficiency
Communication 2,91 1,379 23 
Decision Making 2,88 1,329 24 

Quality Assessment 2,96 1,232 28 

Documentation 2,57 1,287 21 

Knowledge Acquisition 2,92 1,248 24 

Total 2,86 1,279 120 

Ranked Community 
Building Communication 3,39 1,559 23 

Decision Making 2,88 1,541 24 

Quality Assessment 3,04 1,347 28 

Documentation 3,90 1,480 21 

Knowledge Acquisition 3,33 1,659 24 

Total 3,28 1,529 120 

Ranked Intelligent Advice
Communication 3,30 1,579 23 
Decision Making 3,38 1,173 24 

Quality Assessment 3,50 1,622 28 

Documentation 3,05 1,359 21 

Knowledge Acquisition 3,33 1,373 24 

Total 3,33 1,421 120 

Ranked Knowledge 
Management Communication 2,61 1,340 23 

Decision Making 3,33 1,494 24 

Quality Assessment 2,75 1,481 28 

Documentation 2,71 1,347 21 

Knowledge Acquisition 3,13 1,076 24 

Total 2,91 1,366 120 
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Table 11.9: Paired-samples t-tests for comparisons between priorities of support op-

tions_______________________________________________________________________

             t   p 

Ranked Decision Management - Ranked Search Efficiency   -1.2 .221 

Ranked Decision Management - Ranked Community Building  -3.0 .003** 

Ranked Decision Management - Ranked Intelligent Advice  -3.6 .000** 

Ranked Decision Management - Ranked Knowledge Management  -1.5 .146 

Ranked Search Efficiency - Ranked Community Building   -2.1 .038* 

Ranked Search Efficiency - Ranked Intelligent Advice   -2.3 .023* 

Ranked Search Efficiency - Ranked Knowledge Management  -.28 .777 

Ranked Community Building - Ranked Intelligent Advice   -.20 .841 

Ranked Community Building - Ranked Knowledge Management  1.7 .085 

Ranked Intelligent Advice - Ranked Knowledge Management  2.0 .048* 

_________________________________________________________________________ 

 

11.5 Discussion

The survey results offer good food for thoughts. Although we have found some plausi-

ble explanations for our findings, we were quite interested in the opinion of practicing

architects. Therefore, we asked the respondents of our survey to provide feedback on

the results. We sent them an email that summarized the main results that were presented

in the previous section. This email triggered several responses within days, from which

we could distill a number of interesting quotes. Some of these quotes are included in

the discussion below.

With respect to what architects do, the most striking result is that architects seem

to make lots of architectural decisions, but – especially the less experienced ones –

neglect documenting those decisions and their rationale. Most obvious reasons for this

is a lack of time or interest. Often the benefits of documenting design rationale are

only visible in the longer term; in the short term the most important thing is to meet the

deadline, and move on to the next project. The lack of interest in long-term knowledge

reuse is in line with observations from Harrison et al. (2007), who found that architects

lack a real motivation to document and maintain architectural knowledge.

The lack of a defined, visible process for architecting activities could also partly

explain why architects omit to document much. If the role, responsibilities, and extent

of the authority of architects would be better defined, these architects can be made

more accountable by the organization for their actions. Experience in several software

projects shows that a well-defined, visible process (e.g, by using a charter) stimulates

architects to document more knowledge (Kruchten, 1999).
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Another reason for not documenting architectural knowledge is that architects al-

ready possess this knowledge in their minds. There is no direct need for making this

tacit knowledge explicit. This phenomenon is acknowledged by Kruchten et al. (2009),

who also mention that as a consequence, architects cannot revisit or communicate these

decisions. Bosch (2004) also acknowledges this problem, which he called knowledge

vaporization. This process is to be prevented at all costs, because if the reasoning

behind an architectural solution is lost or ‘forgotten’, it may cause design erosion.

Two more reasons for not documenting were provided by architects who responded

to our feedback request:

“Whether or not to document is a tough decision. Doing so could make

yourself redundant in case questions are asked later on, and that is what

worries architects most.”

“Many architects have a technical background and were programmers, de-

signers or system maintainers before they became an architect. For these

people, documenting has always been a pain, and this is a mindset they

still have.”

Our results are in line with a study on the architect’s mindset by Clerc et al. (2007a).

They conducted a survey among architects in the Netherlands and found that the preva-

lent mindset of architects is focused on ‘to create and communicate’ rather than ‘to re-

view and maintain’ an architecture. In our study decision making and communication

scored highest and quality assessment and documentation scored lowest, which further

underlines the emphasis put on creating short-term solutions, rather than maintaining a

body of knowledge that is useful for the longer term as well.

When looking at the prioritization of support methods we were not surprised to

see that managing architectural design decisions was found most important. This is in

line with an increasing focus on design decisions in the software architecture research

community, as reflected in the formulation of a decision view on software architecture

practice (Kruchten et al., 2009) and the adoption of central concepts as ‘decision’ and

‘rationale’ to the upcoming ISO/IEC 42010 standard for software architecture descrip-

tion (ISO/IEC WD3 42010).

The interesting thing, however, is that our results show that experienced architects

differ slightly in their mindset; experienced architects do more on quality assessments

and documentation. Perhaps they value these activities higher because they have en-

countered more situations in which sufficient documentation proved to be useful. An-

other explanation could be that writing architectural documentation is easier if you are

more experienced (e.g., formulating rationale for decisions, or drawing effective ar-

chitectural views). Likewise, conducting architectural audits is something that is only
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possible if you have sufficient experience in the field yourself. This makes it easier to

spot inconsistencies, conflicts, or missing qualities of the system.

As for the other support methods, we were surprised that ‘knowledge management’

support received the lowest scores (see Table 11.7) and that ‘intelligent advice’ was

ranked lowest by the architects (see Table 11.8). These two categories both assist

architects in their routine knowledge processing tasks by automatically retrieving, and

manipulating information, offering suggestions, etc. Particularly because architects

appear to have little time or interest in documenting architectural knowledge, we had

expected that all pro-active support would be more appreciated, and make certain basic

tasks less cumbersome.

We suspect architects are a bit frightened by the idea that smart automated tooling

would take over their role, although they acknowledge the positive effects (pattern P2

was significant). Architects want to sit in the driver’s seat and have a tight control over

all processes. That also explains why support methods that do not endanger this role

(e.g., search efficiency and decision management) are clearly ranked higher. Another

reason for the relative low rank of intelligent support could be the lack of effective

implementations of such support. We heard from several architects that most intelligent

tools and methods are still rather immature and add little to their daily work, but that

more versatile and mature implementations would be welcomed:

I find most specialized tools to have too little functionality that supports

my work as a software architect. As a result, I often resort to more generic

tools such as MS Visio, spreadsheets, etc.”

The fact that architects want to have control over their actions is further underlined

by the fact that in the prioritization of support methods, community building is ranked

fourth (out of five). We had expected the architects to be a bit more ‘team-players’, or at

least more in favor of creating a ‘community of architects’ in which experts effectively

exchange knowledge, discuss experiences, and build up a collective memory. Our study

gives us the impression that practicing architects are rather ‘lonesome’. They are not

the community builders we had expected them to be. Instead they act in splendid

isolation. Several architects confirmed this, two of whom explained it as follows:

“I recognize myself in the ‘lonesome architect’ characterization and find

it actually quite logical. An architect is often busy working in the early

stages of the software life cycle and of projects. Colleagues are busy help-

ing to solve problems of other customers and are thus not around. Fur-

thermore, there is often no guidance for the work you do as an architect

because the systems you help design do not exist yet.”
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“An architect usually considers his own judgment as most precise and

valuable. Referring to others (humans or tools) is often only a strategic

move.”

Coming back to our main research question, our study provides valuable insight

into what architects do and what support they need for sharing architectural knowl-

edge. Architects are individual experts who consume substantial amounts of architec-

tural knowledge but care less for actively sharing such knowledge. We conjecture that

the best way to motivate these lonesome architects in sharing architectural knowledge

involves non-intrusive support that offers various mechanisms to easily store, commu-

nicate or manipulate knowledge in the architecting process. Based on the results of our

survey, we postulate that such support should have two fundamental characteristics:

1. It respects the architect’s autonomy. We learned that architects like to control

the processes they are involved in. Methods that support architectural knowledge

sharing should respect this. Automated support that ‘thinks’ for the architect, or

tools that prescribe architects what to do are not going to work. What does work,

however, are more person-centric descriptive tools that assist knowledge workers

‘on the fly’ during daily routines (Cormican and Dooley, 2007). Although in this

survey architects ranked intelligent support as least needed, feedback obtained

suggests that such support could still be valuable if implementations would be

sufficiently versatile and mature.

2. It stimulates both production and consumption of architectural knowledge.

We saw that support for decision management and search efficiency were most

needed according to practicing architects. Search efficiency support assists the

autonomous, or lonesome, architect in retrieving relevant architectural knowl-

edge when needed, and is thus oriented towards consumption of architectural

knowledge. Decision management helps architects to manage their thought pro-

cesses when taking (new) design decisions, solving conflicts, or codifying design

rationale. This kind of support thus focuses mostly on the creation – or produc-

tion – of architectural knowledge. Based on our survey results, we argue that

mature support for sharing architectural knowledge should assist architects in

both producing and consuming such knowledge.

A promising development in software architecture is the emergence of integrated

platforms for sharing architectural knowledge that implement a range of ‘use

cases’ related to production and consumption of knowledge. A review of such

platforms is provided by Liang and Avgeriou (2009). A main characteristic of

some of these platforms is that they follow a hybrid strategy for architectural
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knowledge sharing. As Lago et al. (2008) argue, such a strategy “support[s]

the knowledge producers in efficiently documenting the knowledge and the con-

sumers in using it”, which would resolve the imbalance of producing and con-

suming knowledge we observed during our study.

11.5.1 Threats to validity

We list possible limitations to our study by discussing the internal validity, construct va-

lidity and external validity following Kitchenham et al. (2002) and Perry et al. (2000).

Our questionnaire design and pilot study ensured that our questions were unam-

biguous, to-the-point and our hypotheses well-focused on the research question we

wanted to answer. This made analysis of the survey data relatively easy, and increased

the chance for meaningful and significant results. With respect to internal validity, our

questionnaire design leaves little room for selection bias or confounding variables.

To conform to construct validity we constructed our theory (cf. Fig. 11.1) as one

of the first steps of our survey design, based on which the items of the questionnaire

were phrased. During both the pilot study and main study we conducted scale analysis

and factor analysis to assess whether our theorized concepts could be unambiguously

retrieved in the data. In the pilot study this helped us to refactor our original framework

(as presented in (Farenhorst and van Vliet, 2009)) into the framework presented in this

paper. Scale and factor analysis during the main study indicated that indeed five factors

of architecting activities and support methods could be identified, which indicates good

construct validity.

With respect to external validity we deem our results fairly generalizable. Our

sample was relatively large, and the fact that four different organizations participated

decreased the chance for organizational bias significantly (even though three of the

four organizations were rather similar in that their core business is IT consultancy). To

obtain a fair reflection of a typical architecting process, many types of architects were

included in our study, including software, IT, solution, enterprise and infrastructure

architects. However, even though the participating companies were international, our

study only focused on practicing architects working in the Netherlands. Our study thus

does not deal with possible cultural or educational factors in which Dutch architects

differ from their colleagues.

11.6 Conclusions

Architects make lots of architectural decisions, but neglect to document them. Pro-

ducing and subsequently sharing of architectural knowledge is clearly not one of their
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most popular activities. For this reason, one would expect that supporting architects

in this latter task is something they appreciate, but the opposite is true. Architects

rather stay in control themselves and still need to be convinced of the value of cur-

rent automated or intelligent support. When it comes to consumption of architectural

knowledge, however, architects indicate that support for effective retrieval of (stored)

architectural knowledge is on the top of their wish list. This imbalance in production

and consumption shows that with respect to sharing architectural knowledge architects

are not the ‘community builders’ many expect them to be. Instead, they are rather

lonesome decision makers who act in splendid isolation.

Our survey research helped unraveling what architects really do and what they need

with respect to sharing architectural knowledge, and thus provided answers to research

questions RQ-II.2 and RQ-II.3. The answers to these questions act as call for awareness

to both researchers and practitioners. We found that effective support for sharing archi-

tectural knowledge should acknowledge ‘the nature of the beast’. We therefore plead

for descriptive, non-intrusive support that respects the architect’s autonomy. Moreover,

to be effective, this support should stimulate architects in both producing and consum-

ing architectural knowledge. Integrated, ‘all-round’, tools environments that imple-

ment a variety of architectural knowledge sharing use cases, seem promising because

they could provide a solid balance between production and consumption of knowledge

in the architecting process.
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Conclusions

In this part we have studied how to support architects in sharing architectural knowl-

edge. Using a typical action research cycle we have conducted four case studies at

RFA followed by a fifth study that validated earlier findings. During these five studies

we learned what organizational challenges exist to sharing knowledge in the architect-

ing process and what desired properties of tool support are. Experimentation with our

own tool environments, plus the identification of what architects do and what they need,

further enhanced our understanding of how to effectively support architects in sharing

architectural knowledge. In §12.1 we elaborate upon our contributions by revisiting

and answering the research questions posed in Chapter 6. In §12.2 we discuss several

topics that need further investigation.

12.1 Contributions

Software architecting is a highly knowledge-intensive process. Many different stake-

holders are involved in this process. Due to the increase in size and complexity of soft-

ware systems, architecting means collaborating. Hence, it is often the case that there is

no one single all-knowing architect; instead the architect role is fulfilled by more than

one person. In order to take well-founded decisions, all involved stakeholders need to

obtain relevant architectural knowledge at the right place, at the right time.

Among researchers and practitioners there is a broad consensus on the importance

of sharing architectural knowledge, in particular for reusing best practices, obtaining

a more transparent decision making process, enabling efficient collaboration between

stakeholders, and maintaining and increasing the know-how of architects.

It is standard practice nowadays for a software development organization to have

databases and repositories at hand to store architectural documentation, standards,
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guidelines, patterns and other architectural knowledge; intranet sites harbor all kinds

of related information; templates exist to model and collect specific knowledge en-

tities such as design decisions in predefined formats. Still, storing, distributing and

reusing knowledge happens on a rather ad hoc basis, which calls for more systematic

approaches to effectively sharing architectural knowledge. Such approaches should

support architects in their daily knowledge-intensive activities. This prevents from

falling in an ‘ICT-trap’, which is caused by an underlying, but unrealistic, assumption

that ICT can always support and improve knowledge sharing within organizations.

In this part of the thesis we have studied how to effectively support architects in

sharing architectural knowledge. As depicted in Fig. 6.1 in Chapter 6, answering this

main research question was only possible by understanding what architects really do

and what kind of support for sharing architectural knowledge they need. Below, we

first answer these latter two questions, and then revisit our main research question.

12.1.1 What do architects do that involves architectural
knowledge sharing? (RQ-II.2)

Sharing architectural knowledge is crucial to prevent this knowledge from dissipat-

ing. However, we found in Chapter 7 that successful knowledge sharing can only be

achieved if the necessary incentives are created. Architects will only share knowledge

with each other if they are motivated to do so. We have identified three incentives for

architectural knowledge sharing: the establishment of social ties, more efficient deci-

sion making, and knowledge internalization. We argue that the main organizational

challenge to sharing architectural knowledge (RQ-II.4) is that these incentives need to

be created.

Creating aforementioned incentives can be achieved by meeting a number of pre-

requisites for sharing architectural knowledge (RQ-II.5). By studying the issues en-

countered with existing tools and methods at RFA, and trying to address those issues,

we learned that alignment between design artifacts, traceability between decisions and

descriptions, a central role of architects, and a central architectural knowledge reposi-

tory, all help in creating an environment in which architects are induced to share archi-

tectural knowledge.

Our initial diagnosis of the architecting process of RFA (cf. Chapter 7) also indi-

cated that architects in fact do much more than creating architectural solutions. The

interactions they have with other stakeholders (e.g., in the customer organization), ex-

tracting useful knowledge from repositories, and collaborating with colleagues are at

least equally important activities. This initial understanding of the architecting pro-

cess was extended with a literature review and insights gained during subsequent case

studies.
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In the fifth study (see Chapter 11) we culminated all insights by constructing a the-

ory of architecting. This theory was then validated by means of a survey. This study

confirmed that the five core activities of architects are: communication, decision mak-

ing, quality assessment, documentation, and knowledge acquisition. All these activities

involve sharing of architectural knowledge, either directly or indirectly, from person to

person, or using repositories. Understanding what knowledge-intensive activities ar-

chitects are involved in not only answered research question RQ-II.2, but also helped

to create a focus when creating solutions to support them in these activities.

12.1.2 What do architects need with respect to architectural
knowledge sharing? (RQ-II.3)

Our answer to research question RQ-II.3 started with studying knowledge management

best practices and typical characteristics of architecting. In Chapter 8 this resulted in

the identification of seven desired properties of tool support for sharing architectural

knowledge, which answers research question RQ-II.6. These tools should 1) offer

stakeholder-specific content, 2) allow easy manipulation of content, 3) be descriptive

in nature, 4) support codification and 5) support personalization of architectural knowl-

edge, 6) enable collaboration, and 7) be sticky in nature.

Based on these properties, plus subsequent investigations into the requirements ar-

chitects at RFA have (research question RQ-II.7) with respect to tool support, we con-

ducted two rounds of tool experimentation. In the first round we built EAGLE, a web

portal for sharing architectural knowledge. As discussed in Chapter 8 this portal ad-

heres to all requirements identified earlier. In Chapter 9 we showed that EAGLE also

offers ‘Just-in-Time’ architectural knowledge to architects using its various knowledge

modules.

Experimentations with EAGLE indicated that it fell a bit short on community build-

ing and communication, while this apparently were two central activities of architects.

To even better align to the daily work of architects, in the second round of tool experi-

mentation we tested an enterprise wiki environment at RFA, as discussed in Chapter 10.

We found that the applicability of wikis is rather broad. Wikis can be used as encyclo-

pedia of architectural knowledge, as community where architects can find each other,

or both.

In the fifth study (see Chapter 11) we aggregated our experience with tool devel-

opment and experimentation in a theory of support methods for sharing architectural

knowledge. This theory was validated by a survey, which confirmed that the five typi-

cal categories of support methods are (in order of preference of practicing architects):

decision management, search efficiency, community building, knowledge management

and intelligent advice.
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12.1.3 How to effectively support architects in sharing archi-
tectural knowledge? (RQ-II.1)

To answer our main research question we combine our knowledge about what archi-

tects do and what they need. In other words, we unify the answers found on research

questions RQ-II.2 and RQ-II.3.

Our research over the past four years has significantly furthered our understanding

with respect to architectural knowledge sharing in practice. We now understand better

what architects do, what their responsibilities are, in which context they operate, and

what role knowledge management plays or could play in their daily work. Taken to-

gether, this provides a good overview of how to effectively support architects in sharing

architectural knowledge, and thus answers our main research question (RQ-II.1). This

overview is culminated in the following lessons learned:

1. Architects do more than just architecting. Although creating architectural

solutions is one of their primary responsibilities, architects spend a consider-

able amount of time on associated tasks and activities as well (see §12.1.1). A

broader view of what architects do in practice is thus required. Consequently,

mechanisms to support architects in sharing knowledge should not only include

architecting support such as modeling architectural design decisions, or offer-

ing templates for architecture descriptions, but also include assistance for stake-

holder communication, quality monitoring and searching relevant information.

2. Architects do not share knowledge automatically. Time is precious, especially

for architects. By acting as ‘bridge’ between business and IT stakeholders, they

spend much time on stakeholder communication, requirement negotiation, and

on developing architectural solutions. Sharing architectural knowledge of and

by themselves is, however, not an explicit part of their job description, especially

not after the fact. Expecting architects to (extensively) share knowledge auto-

matically is therefore not realistic. They need to be motivated to do so. To create

these incentives, architectural knowledge sharing support should focus on assist-

ing architects during architecting activities, instead of only offering repositories

or templates to store their expertise and experiences after the fact. This reduces

the overhead created by knowledge sharing and helps in convincing architects of

the immediate and direct benefits related to this.

3. Software architects benefit from lightweight, Just-in-Time, tool support.

Tools, methods or techniques to support architects in sharing knowledge should

definitely be lightweight to better adapt to the various technical and non-technical
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tasks architects work on. This means that support mechanisms should be suffi-

ciently user-friendly, usable, intuitive, and responsive, in order to motivate archi-

tects to keep using them. In addition, to properly accommodate architects in their

knowledge needs, architectural knowledge should either be delivered to them or

become accessible to them Just-in-Time.

4. Effective architectural knowledge sharing follows a hybrid knowledge strat-

egy. Codification of architectural knowledge using templates, repositories or

meta-models, only supports architects to a certain extent. A substantial amount

of the knowledge of architects will always remain tacit – i.e., impossible to ar-

ticulate, let alone codify – and in these circumstances architects must be able

to find the right person, instead of the right document. Software architecture

knowledge management therefore should follow a hybrid strategy, incorporating

both codification and personalization techniques.

5. Support for sharing architectural knowledge should respect the architect’s

autonomy. During our fifth study we found that architects rather stay in control

themselves when making architectural design decisions (their core activity) and

still need to be convinced of the value of current automated or intelligent sup-

port. Methods that support architectural knowledge sharing should respect this.

Automated support that ‘thinks’ for the architect, or tools that prescribe archi-

tects what to do are probably not going to be successful. Descriptive support

that aligns well to the activities architects spend most of their time on (decision

making, communication, quality assessment, and searching information) is far

more effective.

6. Support for sharing architectural knowledge should stimulate both pro-

duction and consumption of architectural knowledge. Our fifth study high-

lighted that support for decision management and search efficiency were most

needed according to practicing architects. Search efficiency support assists the

autonomous – or lonesome – architect in retrieving (i.e., consumption of) rele-

vant architectural knowledge when needed. Decision management helps archi-

tects in producing architectural knowledge, i.e., to manage their thought pro-

cesses when taking design decisions, solving conflicts, or codifying design ratio-

nale. Mature support for sharing architectural knowledge should assist architects

in both producing and consuming such knowledge.

Tools and methods to support architects in sharing architectural knowledge should

follow these lessons in order to be effective. Experimentation with EAGLE, our web
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portal for sharing architectural knowledge (Chapter 9), and an enterprise wiki (Chap-

ter 10) indicated that these allround, versatile, descriptive, platforms are appreciated by

architects and successful to foster sharing of architectural knowledge in organizations.

12.2 Discussion

The methodology followed in this part of the thesis is action research. Our four case

studies focused on

1. diagnosing the architecting process to identify organizational challenges to shar-

ing architectural knowledge (Chapter 7),

2. action planning by identifying desired properties of tool support for sharing such

knowledge (Chapter 8),

3. action taking and evaluating these actions by experimenting with EAGLE (Chap-

ter 9), and

4. action taking and evaluating these actions by experimenting with an enterprise

wiki platform (Chapter 10).

The fifth and last stage of action research, specifying learning, typically involves

generation of a conceptual or theoretical model based on the outcomes of the earlier

stages. In Chapter 11 we presented our theory, which we then validated using survey

research.

Action research is among the more qualitative approaches. It is often used for

achieving valuable goals for the research subjects, which makes it a popular technique

for organizational development (Baskerville, 1999). In our case, conducting action

research was particularly suitable for understanding the challenges at RFA related to

sharing architectural knowledge, and for collaborating with the practicing architects in

making improvements in this area. Action research, however, also has its limitations.

Kock identifies three threats of action research (Kock, 2004). Below these threats are

explained, and we discuss how we dealt with them during our research.

1. The essence of the uncontrollability threat is that the environment (i.e., organi-

zation) being studied will often change in ways that are completely unexpected,

which may force the researchers to revisit their methods, theoretical assumptions,

or even the research topic before the action research cycle is completed.

Our research was susceptible to the uncontrollability threat during the fourth

case study at RFA, when RFA’s contact person of the GRIFFIN project left the
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company. Fortunately, we already established good contacts with several other

architects and managers in this organization, but still some delay was caused

because we needed to convince new managers of the trials we were conducting

with our enterprise wiki.

2. The essence of the contingency threat is that the vast amounts of data obtained

during action research can be rather ‘shallow’ – or difficult to generalize – be-

cause the rich context in which these results are collected makes it difficult to

separate out different components that refer to particular effects or constructs.

Our research was to a certain extent vulnerable to the contingency threat, es-

pecially during the four case studies conducted at RFA. Although occasionally

architects from other teams were interviewed as well, the core of the experi-

mentation was conducted using one team of architects. Because this architect

team was positioned as being central to RFA, they offered services to all busi-

ness units and domains (e.g., industry, finance, government, health care). Still,

the main experience and expertise of the software and enterprise architects in

this team targeted central and local government systems, because they primarily

worked on software development projects in the public domain. We thus ran the

risk that the insights gained by interviewing these architects were not completely

generalizable over the whole architect population. This was one of the main

reasons for including three additional organizations in our survey, that acted as

validation study. The results of the survey indicated no significant changes be-

tween these four participating organizations, which led us believe that the impact

of the contingency threat is not large in our research.

3. The crux of the subjectivity threat is that the deep involvement of researchers

with client organizations in action research studies may hinder good research by

introducing personal biases in the conclusions. After all, it is impossible for a

researcher to both act in a detached position and at the same time exert positive

intervention on the environment and subjects being studied.

Although our research may be vulnerable to the subjectivity threat, just like any

other action research study, we argue that the way the GRIFFIN consortium

was organized minimized any negative effects. Periodic meetings between all

researchers of the project ensured that the studies conducted by individual re-

searchers were in line with the overall goals of the GRIFFIN project, and that

sound research methods were used. Moreover, in yearly meetings with all in-

dustrial partners all research results were presented to each other, after which

commonalities and differences between organizations were spotted and the re-

search agenda of the next year was defined. The nature of the project consortium
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thus prevented the researchers working at the case studies at RFA from becoming

biased, so that research data could not be interpreted wrongly or subjectively.

Although we made considerable progress in the domain of architectural knowledge

sharing support over the past four years, much more can and needs to be done. Below,

we highlight some topics that deserve particular attention in further research.

With respect to understanding what architects do and what they need for sharing

architectural knowledge, we are interested in verifying whether our results can be gen-

eralized further. As mentioned in §11.5.1 our survey population consisted of Dutch

architects alone. We find it interesting to explore whether any cultural or regional ef-

fects exist to what architects’ typical activities are or what knowledge needs they have.

It is also worth to continue investigating preferences for architectural knowledge

sharing support. As discussed in §11.4.4 we did find a sliding scale of priorities of

support methods, but we could only make an initial ordering of methods that are more,

or less, needed by architects. By forcing architects to explicitly choose between sup-

port methods, we can gain a better understanding of the tradeoffs architects make in

choosing which support is most useful. Conjoint analysis (Orme, 2006), a technique

often used in marketing research, would be suitable as a method in a follow-up survey

for this purpose.

With respect to tool development, experiments with EAGLE and our wiki indi-

cated that non-intrusive, integrated environments have much to offer to architects as

long as they adhere to the lessons learned described in §12.1. Integration with existing

(non-architectural) tools is crucial as well. For example, many large IT organizations

already have software to manage documentation and workflow (e.g., MS Sharepoint).

To be effective, architects are not helped by yet another tool, but by an environment

that further glues existing solutions together. This increases the traceability of archi-

tectural knowledge in the organization, and enhances both the functionality and quality

of knowledge sharing support for architects. Such an effective ICT infrastructure posi-

tively influences the level of structural social capital in an organization (van den Hooff

and Huysman, 2009). This in turn stimulates the creation of a community of architects;

a community in which sharing of architectural knowledge is not a punishment, but a

reward; a community in which even the most lonesome architect feels inclined to share

some of his precious expertise.
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13
Discovering Architectural Knowledge

Software product audits are a typical example of ‘knowledge work’. In this chapter, we

present the main challenge taken on in Part III, namely how auditors can be supported

in discovering architectural knowledge relevant to an audit. We briefly discuss the main

types of architectural knowledge in the context of the audit process, and distill research

questions that shall be answered throughout the remainder of this part.

13.1 Introduction

On occasion, organizations may experience the need to verify the quality of a software

product. Such a need may arise, for example, prior to acquisition or in the case of

contracted-out development. A way to assess the quality of a software product is to let

an independent party perform an audit1.

The architectural design of a software product and the architectural design deci-

sions taken play a key role in software product audits. Architectural design decisions

and their rationale provide, for instance, insight into the trade-offs that were considered,

the forces that influenced the decisions, and the constraints that were in place. The ar-

chitectural design that is the result of these decisions allows for comprehension of such

1The ISO/IEC 14598-1 international standard (ISO/IEC 14598-1) defines a software product as ‘the set of

computer programs, procedures, and possibly associated documentation and data’. Quality is defined as ‘the

totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs’, while quality

evaluation is ‘a systematic examination of the extent to which an entity is capable of fulfilling specified

requirements’. Consequently, when we refer to a software product audit - i.e., an official examination in

which the quality of a software product is evaluated - we refer to a ‘systematic examination of the extent to

which a set of computer programs, procedures, and possibly associated documentation and data are capable

of fulfilling specified requirements’. For reasons of brevity, we occasionally uses the term ‘audit’ to denote

‘software product audit’.
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matters as the structure of the software product, its interactions with external systems,

and the enterprise environment in which the software product is to be deployed.

Over the past four years, we have collaborated with DNV, especially with their

Dutch (IT) advisory and education branch DNV-CIBIT. This unit acts - amongst others

- as an independent expert in software product quality assessments and has been one

of the industrial partners in the GRIFFIN project. The goal of this collaboration was

to investigate the role architectural knowledge plays in software product audits, and to

improve upon current practices to manage such knowledge.

In Part I we concluded that a typical challenge related to audits is architectural

knowledge discovery. In this part, we will further examine this challenge and inves-

tigate related topics. The remainder of this chapter is organized as follows. In §13.2

we provide a high-level overview of the problems addressed in this part; we identify

two types of architectural knowledge pertinent to software product audits and discuss

their relation to two different stages in the audit process. In §13.3, we derive the re-

search questions that shall be addressed in this part. In §13.4 we briefly outline the

research methods applied in our research; these methods will be further detailed in the

subsequent chapters. In §13.5 we provide an overview of the chapters in this part and

their relation to the research questions from §13.3. In §13.6, finally, we list the prior

publications upon which this part has been based.

13.2 Problem Statement

The conclusion in Part I that there is a challenge to enhance the discovery of relevant

architectural knowledge was based on a characterization of the use of architectural

knowledge within DNV (cf. §4.5). In this section, we examine the use of architectural

knowledge in software product audits in more detail.

In a software product audit, two types of architectural knowledge can be distin-

guished. On the one hand there is architectural knowledge pertaining to the current

state of the software product; this knowledge – which we may refer to as IST archi-

tectural knowledge, or IST-AK2 for short – reflects the architectural decisions taken.

On the other hand there is architectural knowledge pertaining to the desired state of

the software product; this SOLL-AK3 reflects the architectural decisions demanded (or

expected). It is the auditor’s job to compare the current state with the desired state.

Hence, software product audits are knowledge-intensive tasks in which architectural

knowledge plays a pivotal role. In other words, audits can be classified as ‘knowledge

work’.

2from the German word ist, meaning ‘is’ or ‘as it is’.
3from the German word soll, meaning ‘as it should be’.

212



13.2. PROBLEM STATEMENT

Knowledge work, according to Mackenzie Owen (2001), incorporates “the gath-

ering, processing, creating, sharing and disseminating of knowledge” and consists of

three distinct stages: input, throughput, and output. In each of these stages, knowledge

is employed:

∙ In the input stage, relevant existing knowledge and data are gathered;

∙ In the throughput stage, knowledge and data are analyzed and processed;

∙ In the output stage, the results of the previous stage are recorded and dissemi-

nated.

A typical software product audit uses architectural knowledge in these stages as

follows:

∙ Input stage: gather relevant architectural knowledge regarding the the desired

state (SOLL-AK) and current state (IST-AK) of the software product;

∙ Throughput stage: compare the SOLL-AK with the IST-AK;

∙ Output stage: lay down findings regarding deviations of the IST-AK from the

SOLL-AK in a report.

We can distinguish three stakeholders in a software product audit: the customer

(i.e., the party who requested the audit), the supplier (i.e., the party who developed the

software product), and the auditor (i.e., the party who independently assesses whether

the supplier’s software product conforms to the customer’s needs).

The input to a software product audit can be divided into two categories:

1. an evaluation frame (which reflects the SOLL-AK), and

2. the product deliverables (which reflect the IST-AK).

During a software product audit, the product deliverables are assessed against the

evaluation frame. In the input stage, the product deliverables are obtained from the

supplier and the evaluation frame is written by the auditor based on the high-level

quality characteristics the customer desires. The auditor usually determines these char-

acteristics, expressed in terms of quality attributes such as ‘maintainability’, ‘reliabil-

ity’, or ‘efficiency’ (cf. (ISO/IEC 9126-1; van Zeist et al., 1996)), in a workshop with

the customer. From these quality attributes, the auditor derives quality criteria that

represent concrete measures that should or should not be present in the software prod-

uct. This definition of an evaluation frame is an important prerequisite for a successful

audit.
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In the throughput stage, the auditors assess the satisfaction of the criteria in the

evaluation frame. For each of the criteria from the evaluation frame, the expected ef-

fect on the product is determined. The affected artifacts are then examined to establish

whether the criteria are satisfied. For instance, (solutions for) criteria regarding scal-

ability are usually expected to be found in the software architecture document. As a

consequence of this method, artifacts that are not expected to contain such solutions are

considered not in scope of the audit. Nevertheless, these artifacts might be skimmed to

gain an overall impression of the product.

Because of the amount of artifacts in a typical software product, the audit work is

usually split up over multiple auditors. A typical division is documentation artifacts

(i.e., the product documentation) vs. documented artifacts (e.g., the product’s source

code). Documentation artifacts are often further subdivided because this set may still

be very large. Only the very essential documents are then read by all (documentation)

auditors; the other documents are only read by a single person. Assessment of code

artifacts is often performed with spot checks based on the documentation.

The result from the output stage is an audit report. In this report, the (factual)

findings are presented followed by a conclusion. The conclusion comprises an inter-

pretation of the findings by the auditors, and identifies for instance risks related to the

observed facts.

From our discussions with auditors and our analysis of the use of architectural

knowledge within DNV, we identified two problems with the use of architectural knowl-

edge, related to the input stage and throughput stage of an audit, respectively. Both are

related to the challenge of architectural knowledge discovery:

1. In the input stage of an audit, the discovery of applicable quality criteria is dif-

ficult. Although many criteria are applicable to multiple projects or products,

there is no real means of easily sharing these criteria. Audit tools mainly focus

on the calculation of code metrics in the throughput stage and not on knowledge

reuse from earlier audit projects. In order to find applicable criteria that were

used in earlier projects, one has to delve into the earlier evaluation frame docu-

ments. This is not only a tedious and time-consuming task, but can also lead to

oversights.

2. In the throughput stage, a consequence of the strategy chosen to divide the work

load is that none of the auditors has a complete picture of the software product.

Although within DNV each of the auditors informs the other auditors and asks

them for more information when necessary, the auditors acknowledge there is a

potential risk that some issues remain unseen. Unfortunately, the sheer amount

of artifacts makes it impossible to have two or more auditors assess all prod-
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uct deliverables. This is especially troublesome for the product documentation

artifacts, which – unlike code – cannot be automatically analyzed whatsoever.

13.3 Research Questions

In the remainder of this part, we address the challenge that auditors experience in dis-

covering relevant architectural knowledge in the context of a software product audit.

Consequently, the main research question is:

RQ- III.1 How can auditors be supported in discovering relevant architectural knowl-

edge?

In the problem statement in §13.2, we have seen that auditors experience problems

with discovering relevant SOLL-AK and IST-AK in the input and throughput stage

of an audit, respectively. Hence, the main research question can be divided into two

subquestions, as depicted by the arrows in Fig. 13.1):

RQ- III.2 How can the discoverability of relevant SOLL-AK be enhanced?

and

RQ- III.3 How can the discoverability of relevant IST-AK be enhanced?

We have seen that the SOLL-AK in an audit is very much related to the quality re-

quirements of the customer. Ultimately, the manifestation of SOLL-AK is in the form

of quality criteria, which are preferably to be reused from earlier audits. We could view

the quality criteria as an elaborate version of the customer’s high-level quality require-

ments. However, in the throughput stage the quality criteria need to be compared not

against requirements, but against the actual architectural design decisions that form the

product’s IST-AK. Hence, quality criteria also seem to have a relation to the architec-

tural solution: they appear to lie somewhere on the border between requirements and

architecture. A better understanding of the role and nature of quality criteria in an audit

is necessary if we want to support their reuse. Therefore, we first need to address the

question:

RQ- III.4 What is the relation between requirements and architecture?

When we have an better understanding of the relation between requirements and

architecture, we can build upon this understanding to answer the question:
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RQ- III.5 How can the reuse of quality criteria be supported?

Regarding the IST-AK, the amount of product artifacts to assess in the throughput

stage is a major point of concern for auditors. Especially the amount of documentation

artifacts can be overwhelming. We therefore ask:

RQ- III.6 How can the discovery of AK in software product documentation be sup-

ported?

The fact that there is not a single document that contains (an overview of) all ar-

chitectural knowledge is an indication that sharing architectural knowledge through

documentation is hard. Many software development projects end up with huge stacks

of documents in which one can easily lose track. This means that the author’s message

may not come across. If the use of documentation for sharing architectural knowledge

is indeed inherently difficult, we would like to know why. Our final question therefore

is:

RQ- III.7 Why is sharing AK using documentation hard?

13.4 Research Methods and Methodology

The research reported on in this part has been part of the GRIFFIN project. In this

project, we collaborated with several industrial partners. Most of the research for

Part III has been conducted in collaboration with DNV.

RQ- III.1: How can auditors 

be supported in discovering 

relevant architectural 

knowledge?

RQ- III.2: How can the 

discoverability of relevant 

SOLL-AK be enhanced?

RQ- III.3: How can the 

discoverability of relevant IST-

AK be enhanced?

RQ- III.4: What is the relation between 

requirements and architecture?

RQ- III.7: Why is sharing AK using 

documentation hard?

RQ- III.5: How can the reuse of quality 

criteria be supported?

RQ- III.6: How can the discovery of AK 

in software product documentation be 

supported?

Figure 13.1: Research questions of Part III
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The research questions from §13.3 can be broadly categorized in questions that

target ‘world problems’ and questions that target ‘knowledge problems’. Knowledge

problems, according to Wieringa and Heerkens (2006), consist of “a lack of knowledge

about the world”. Their solution involves a change in the state of our knowledge, and

as such they are ‘real’ research problems. World problems, on the other hand, consist

of “a difference between the way the world is and the way we think it should be”.

Their solution involves a change in the state of the world, and as such they are a type of

engineering problem. The research questions RQ-III.5 and RQ-III.6 both address world

problems and call for the design of new tools or techniques, whereas research questions

RQ-III.4 and RQ-III.7 address knowledge problems and call for a more exploratory

type of research.

In order to answer questions RQ-III.5 and RQ-III.6, we followed a constructive re-

search approach. This is “a research procedure for producing innovative constructions,

intended to solve problems faced in the real world and, by that means, to make a contri-

bution to the theory of the discipline in which it is applied.” Constructive research can

be viewed as “a form of conducting case research parallel to ethnographic, grounded

theory, theory illustration, theory testing and action research” ((Lukka, 2003), cited

in (Caplinskas and Vasilecas, 2004)).

Our research involved interviews, critical analysis of the literature, and proof of

concept development. Interviews were primarily held to gain a better understanding

of the types of problems auditors experienced surrounding the (re)use of architectural

knowledge in audits. Proofs of concept were used to demonstrate in which way these

problems can be overcome. In one case (RQ-III.6), additional interviews were used to

validate the proof of concept.

The particular interview technique we used for proof of concept validation is known

as the ‘repertory grid technique’. This technique was also the main method used in our

exploratory research to answer research question RQ-III.7. A critical analysis of the

literature, finally, was the primary method to answer question RQ-III.4.

13.5 Outline of Part III

In the remainder of this part, the distinction between SOLL-AK and IST-AK, and the

correspondence to the input and throughput stages of an audit, can be found back in

the order of the chapters. Chapter 14 and Chapter 15 together answer question RQ-

III.2. Chapter 16 and Chapter 17 together answer question RQ-III.3. All four chapters

together answer our main research question RQ-III.1.

The observing reader will notice that the four chapters are not presented in the

chronological order of their publication (cf. §13.6). While performing our research,
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we initially focused on the discovery of IST-AK from software product documenta-

tion, since the auditors indicated at that time that this topic had the highest urgency.

Later in the project, we also dedicated our efforts to the research problems surrounding

(reuse of) SOLL-AK. From the perspective of the audit process, however, presenting

the chapters on SOLL-AK before those on IST-AK, rather than in chronological order,

provides a more coherent picture of our research results.

This part consists of the following chapters:

∙ Chapter 13 (this chapter): provides a high-level overview of the audit process, the

types of architectural knowledge that play a role in this process, and the research

problems addressed in the remainder of Part III.

∙ Chapter 14: addresses research question RQ-III.4; it describes the relation be-

tween requirements and architecture and argues that architecturally significant

requirements and architectural design decisions can be treated as equal.

∙ Chapter 15: addresses research question RQ-III.5; based on the premise from

Chapter 14 this chapter presents an ontology for codification of quality criteria

and a prototype tool based on that ontology that supports auditors in reusing

applicable quality criteria in new audit projects.

∙ Chapter 16: addresses research question RQ-III.6; it proposes the use of text

mining (in particular latent semantic analysis) to discover and guide the auditor

to relevant architectural knowledge.

∙ Chapter 17: addresses research question RQ-III.7; it presents a study from which

we hypothesize that the understanding of software documentation is tightly linked

to one’s role in the development process. For independent auditors, who are not

directly involved in the development process, this would imply that they may

experience difficulties understanding the software documentation. But even for

members of the same development team this link to the process may result in

problems fully understanding the documentation.

13.6 Publications

Most of the research presented in Part III has either been published previously or is

currently in press. The chapters in this part are based on the following publications.

Parts of Chapter 14 have been published as:

∙ de Boer, R.C. and H. van Vliet. On the Similarity between Requirements and

Architecture. Journal of Systems and Software, 82(3):544–550, 2009.
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Parts of Chapter 15 have been published as:

∙ de Boer, R.C. and H. van Vliet. QuOnt: An Ontology for the Reuse of Quality

Criteria. In 4th Workshop on SHAring and Reusing architectural Knowledge

(SHARK’09). IEEE Computer Society, 2009.

∙ de Boer, R.C., P. Lago, A. Telea and H. van Vliet. Ontology-Driven Visual-

ization of Architectural Design Decisions. In Joint Working IEEE/IFIP Confer-

ence on Software Architecture & European Conference on Software Architecture

(WICSA/ECSA 2009). In press.

Parts of Chapter 16 have been published as:

∙ de Boer, R.C. Architectural Knowledge Discovery: Why and How? ACM SIG-

SOFT Software Engineering Notes, 31(5), 2006.

∙ de Boer, R.C. and H. van Vliet. Constructing a Reading Guide for Software

Product Audits. In 6th Working IEEE/IFIP Conference on Software Architecture

(WICSA 2007), IEEE Computer Society, 2007.

∙ de Boer, R.C. and H. van Vliet. Architectural Knowledge Discovery with Latent

Semantic Analysis: Constructing a Reading Guide for Software Product Audits.

Journal of Systems and Software, 81(9):1456–1469, 2008.

Parts of Chapter 17 have been published as:

∙ de Boer, R.C. and H. van Vliet. Writing and Reading Software Documentation:

How the Development Process may Affect Understanding. In Cooperative and

Human Aspects of Software Engineering (CHASE 2009), IEEE Computer Soci-

ety, 2009.
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14
On the Similarity Between Requirements

and Architecture

Many would agree that there is a relationship between requirements engineering and

software architecture. However, there have always been different opinions about the

exact nature of this relationship. Nevertheless, all arguments have been based on one

overarching notion: that of requirements as problem description and software archi-

tecture as the structure of a software system that solves that problem, with components

and connectors as the main elements. Recent developments in the software architec-

ture field show a change in how software architecture is perceived. There is a shift from

viewing architecture as only structure to a broader view of architectural knowledge that

emphasizes the treatment of architectural design decisions as first-class entities. From

this emerging perspective we argue that there is no fundamental distinction between

architectural decisions and architecturally significant requirements.

14.1 Introduction

The relation between requirements and software architecture has long been subject to

debate. As early as 1994, at the first international conference on requirements engineer-

ing, a discussion panel shed its light on the role of software architecture in requirements

engineering. In their position papers (Shekaran et al., 1994), all panel members in one

way or another hinted at a fundamental distinction between requirements engineering

and software architecture. Garlan discussed the difference between problem space and

solution space; Jackson contrasted application domain with machine domain; Mead

stated that the architect represents the software developer’s viewpoint and implies that

the requirements engineer represents the customer’s viewpoint; Potts distinguished be-
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tween ‘what’ and ‘how’; Reubenstein defined requirements as an index into solutions,

and opposes an idealized architecture to the as-built architecture; Shekaran – like Gar-

lan – distinguished also between problem and solution, but further argued that require-

ments engineering is somewhere in between the two.

Ever since this panel discussion, many have tried to find approaches that bridge

the gap between requirements and architecture and integrate the two. Over the years

there have been numerous attempts to find such approaches, attempts that have even

briefly sparked the dedicated STRAW (software requirements to architectures) work-

shop series. Those attempts have resulted in many approaches – including the Twin

Peaks model (Nuseibeh, 2001b), problem frames (Jackson, 2001), and the CBSP ap-

proach (Medvidovic et al., 2003) – that have increased our collective awareness of the

relation between requirements and architecture. However, this relation is invariably

characterized based on the distinction between requirements and architecture; a gap

that needs to be bridged, often in terms of requirements representing the problem and

architecture being the solution.

A problem with the focus on distinction is that the fuzzy line between what is

called ‘requirements’ and what is called ‘architecture’ can be arbitrarily drawn. Com-

monly used criteria to tell requirements and architecture apart include ‘what’ versus

‘how’, ‘problem’ versus ‘solution’, and (a more pragmatic distinction we found to be

used in industry) ‘determined before’ versus ‘determined after the contract with the

customer has been signed’. Those criteria all carry a notion of ‘already fixed’ versus

‘what remains to be done’. It is nothing new that in software development a clear line

between ‘fixed’ and ‘to be done’ is impossible to define. The discussion by Swartout

and Balzer (1982) on this ‘inevitable intertwining of specification and implementation’

holds equally well for the inevitable intertwining of requirements and architecture.

Based on an emerging view on architecture, we hypothesize that there is no fun-

damental difference between what we call requirements and what we call architecture.

Or, to put it more precisely, that architecturally significant requirements are in fact ar-

chitectural design decisions, and vice versa. We understand that this is a provocative

hypothesis that needs further corroboration. In the remainder of this chapter we show

how we arrive at this claim, as well as some of its implications.

14.2 Where do Problems End and Solutions Be-

gin?

The ongoing discussion about the relation between requirements and architecture has

undoubtedly been influenced by the prevailing view on both fields. In requirements

222



14.2. WHERE DO PROBLEMS END AND SOLUTIONS BEGIN?

engineering, the prevailing view tends to be one of requirements engineering as prob-

lem analysis (cf. Jackson’s problem frames, but also goal-oriented approaches such as

KAOS). The traditional view on architecture, on the other hand, is one of architecture

as solution structure, usually described in boxes-and-arrows type of diagrams. This

traditional structure-oriented view is currently shifting to a more knowledge-oriented

view.

14.2.1 Requirements engineering as problem analysis

Requirements engineering is usually seen as focusing on the problem domain, as op-

posed to the solution domain that architecture belongs to. A prototypical example of re-

quirements engineering as problem analysis, Jackson’s problem frames are an increas-

ingly popular requirements engineering instrument for problem analysis and problem

decomposition. The problem frames framework emphasizes a thorough understanding

of the problem before any solutions are considered.

Jackson (2001) discusses the difference between statements on fixed and chosen (or

desired) properties in relation to problem analysis by referring to the mood in which

statements are expressed. To this end, in his problem frames framework he uses the

term ‘indicative’ for given, objective truths and ‘optative’ for chosen options. Problem

analysis involves specifying the problem domain, the requirements, and the machine

specification. The problem domain is the part that is fixed; it is the part of the world

where the problem is located which has indicative properties that one is relying on,

such as the behaviour of of a car on a road. The chosen parts are the requirements and

the machine specification. The requirements are “optative descriptions of what the cus-

tomer would like to be true in the problem domain”, for example1 the correspondence

of a speedometer’s display with the current speed of the car; the machine specification

is an “optative description [of] the machine’s desired behaviour at its interfaces with

the problem domain”, for instance the way in which a computer receives pulses from a

rotating wheel and sets the speedometer’s display accordingly.

The limitation of a machine specification to the behaviour at the machine’s inter-

faces suggests a crisp distinction between problem and solution, between requirements

and architecture; since the machine domain is considered to provide the solution to

the problem at hand, the only options that need to be described are the customer’s re-

quirements and the machine’s desired behaviour with respect to the problem world.

The various solution options, i.e., ways to structure and build the machine, are not yet

considered.

However, it has been recognized that problem analysis cannot be completely sep-

1see (Jackson, 2001) for details on this and more examples.
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arated from the considered solutions, since those solutions themselves may affect the

problem world. Rapanotti et al. (2004) propose an extension of problem frames, called

architectural frames, to represent ‘those architectural elements that impact the prob-

lem description’. They demonstrate their approach by defining an architectural frame

for the pipe-and-filter architectural style. This style mandates an architecture in which

components (the ‘filters’) have input and output connectors that can be linked to form

connections (the ‘pipes’) through which data flows from component to component.

Rapanotti et al. argue that using the pipe-and-filter style for a transformation problem

(they use the KWIC problem2 as an example) introduces new sub-problems regarding

input, output, transformation, and scheduling. This modification of the problem world

leads to new requirements as well: a number of filters needs to be designed, or reused,

to address the original transformation problem, input and output data must be converted

to a suitable format, and scheduling must be fair (Rapanotti et al., 2004).

While Rapanotti et al. take the use of a pipe-and-filter architectural style for granted,

there are more architectural options applicable to the KWIC problem. Chung et al.

(1999) show how a customer’s needs determine the relative criticality of requirements

which can be satisfied through different architectural alternatives. They discuss a sce-

nario where a KWIC component is to be used in a web-based shopping catalog. The

e-shopping vendor’s user requirements, such as ease of use, good search time perfor-

mance, and effective space resource utilization, are translated to system requirements

regarding for example interactivity, extensibility, and space performance. The high

relative criticality of space performance – the number of items in the catalog is ex-

pected to increase rapidly – rules out the use of a pipe-and-filter style for the KWIC

component. Another option is to use a shared data architecture, which would meet the

required space performance but is ruled out because it fails to meet the extensibility re-

quirements. Instead, Chung et al. conclude that, taking all requirements and criticality

values into account, for this particular scenario an implicit invocation style would suit

the KWIC component best – even though it does not score as good on space perfor-

mance as a shared data architecture. Hence there is not a one-on-one mapping from a

particular problem and/or requirement to a particular architectural solution.

In summary, although the idea of requirements engineering as problem analysis

– separated from solution considerations – seems conceptually clean, in reality this

separation doesn’t hold true. There is a rather intricate interplay between problem

and solution. Choices for particular solution directions involve trade-offs that favour

2The ‘keyword in context’ or KWIC problem is a famous problem in software engineering, particularly

due to Parnas’ discussion of this problem in the context of modular design (Parnas, 1972). A KWIC index

system ‘circularly shifts’ a given line of text, e.g., a publication title, by repeatedly removing the first word

and adding it to the end of the line. The resulting KWIC index is a lexicographically ordered list of all shifted

lines, in which one can easily find a title when only part of the title is known.
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certain requirements over others. The choice for a certain solution impacts not only

which requirements can be satisfied, but – perhaps even more important – also which

ones cannot be satisfied. At the same time, the choice for a particular solution may

introduce new (sub)problems and hence new requirements.

14.2.2 Software architecture: Beyond solution structure

Until recently, the view on architecture has been relatively stable. Architecture was

considered to be the (high-level) structure of a software-intensive system, usually in

terms of components and connectors. As of the early 2000s, part of the architecture

field is moving from this structure-oriented view on architecture to a more knowledge-

oriented view, in which design decisions in particular are treated as first-class entities

(cf. Chapter 3). As a result, ‘the architecture’ is no longer solely regarded as the so-

lution structure, but also – occasionally even instead – more and more as the set of

design decisions that led to that structure. The actual structure, or architectural design,

is merely a reflection of those design decisions.

Architectural design decisions are not only directly related to requirements, but they

can also be related to other architectural design decisions. The ontology for architec-

tural design decisions constructed by Kruchten (2004) aims among others to formally

describe such relations. Possible relationships between design decisions include con-

straints, conflicts, and alternatives. For example, the decision to use J2EE constrains

the decision to use JBoss (a J2EE application server), and conflicts with the alternative

decision to use dotNet. Similarly, the decision to use a pipe-and-filter style constrains

the decision to select or design individual filters. Although the impact of the decision

on the problem world is not treated explicitly, this is the same kind of mechanism that

we saw in §14.2.1; architectural design decisions may introduce new problems to be

solved by subsequent decisions.

By breaking down architecture design into individual design decisions, the emerg-

ing knowledge-oriented perspective embodies a new way of how we perceive architec-

ture design. It shifts the focus from the result in terms of components and connectors to

the process of getting to the architecture design instead. It consequently puts more em-

phasis on the rationale of an architectural design. It also exposes, again, the fuzziness

of the ‘problem vs. solution’ distinction, this time from a solution perspective.

14.2.3 Problem vs. solution: A false dichotomy?

Many requirements can be posed that do not play a role at all at the architectural level,

for instance the requirement to use the metric system for a car’s speedometer, i.e., dis-

play a car’s speed in km/h and not mph. We will not consider such requirements, but
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we limit our discussion to requirements that are ‘architecturally significant’, in other

words requirements that influence the architecture. This is a natural limitation, since

we intend to explore the relation between requirements and architecture. Therefore,

in the remainder of this chapter we focus on architecturally significant requirements

(ASRs) and architectural design decisions (ADDs) as first-class entities from require-

ments engineering and architecture design, respectively.

We have already seen that the distinction between problem and solution is at best

fuzzy. In Chung’s example paraphrased in §14.2.1, for instance, the indicative problem

domain properties of a rapid increase of catalog items and limited storage space (im-

plicitly assumed by the original authors) lead to the optative statement that the available

space should be effectively used. This statement, clearly an architecturally significant

requirement, in turn impacts the eventual choice of architectural style. Note that for the

same indicative properties a different requirement could have been phrased, for exam-

ple the use of scalable storage space. In that case, yet another architectural style might

have been more appropriate, or a pipe-and-filter style might have been the best choice

after all.

The fuzziness between problem and solution does not merely play a role at a theo-

retical level, as can be seen from various reports from industry. For example, Poort and

de With (2004) argue that requirements conflicts they encounter in practice necessar-

ily “arise from limitations in the solution domain”. Along the same line, Kozaczynski

(2002) observes that “in practice key requirements are not fully understood until the

architecture is baselined”. And after analyzing five industrial software architecture

design methods, Hofmeister et al. (2007) conclude that all five methods proceed non-

sequentially because “the inputs (goals, constraints, etc.) are usually ill-defined, and

only get discovered or better understood as the architecture starts to emerge”, and that

while “most architectural concerns are expressed as requirements on the system, [. . . ]

they can also include mandated design decisions”. Finally, Savolainen and Kuusela

(2002) present a system design framework in which they suggest to mix design and

requirements specifications when appropriate since “all design details that are not op-

tional can be treated as highly constrained requirements”.

Apparently the choice of required behavior given a particular problem can have

tremendous impact on the architecture of the machine that deals with that problem.

Moreover, the decision to use a particular architectural style again impacts the problem

world, where it may introduce new requirements, as well as subsequent ADDs. Hence

both ASRs and ADDs appear to live in a grey area between the desired behavior in

the problem world and the desired properties of the machine to be constructed. Their

origin and their effect are not confined to either problem or solution.
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ARE REALLY THE SAME

14.3 Why Architectural Requirements and Design

Decisions Are Really The Same

The difficulty to distinguish between ASRs and ADDs is perhaps not all that strange if

we consider that both are optative statements, or decisions, that embody what one wants

to achieve. Those decisions may constrain, or may themselves be constrained by, other

decisions. This means that every optative decision based on an indicative problem

setting has itself indicative properties from the perspective of subsequent decisions,

as depicted in Fig. 14.1. In other words, the decision is reflected in, and may even

become part of, the problem world. Some of those decisions we call ‘requirements’,

other ‘architectural design decisions’, but there is no fundamental difference between

the two.

To illustrate this point, let us consider a system that consists of a dedicated machine,

say a package router (cf. (Jackson, 2001)), that we need to build. If the hardware

configuration has already been determined, it is part of the indicative problem world

and its physical layout of pipes and switches would co-determine and constrain the

requirements and subsequent architectural design of the software. If, on the other hand,

the hardware configuration has yet to be decided upon, architectural design decisions

would have to be made to determine the architecture of the software as well as the

architecture (or physical layout) of the hardware. Obviously, decisions on the layout of

the physical pipes and switches would still constrain the feasibility of requirements and

the architecture for the system’s software. The only difference with a predetermined

Problem

indicative

Problem’

indicative

Requirement 

optative

Solution 

optative

Solution’ 

optative

Decision 

optative

Problem’’

indicative

...

Figure 14.1: Indicative properties of optative decisions
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hardware configuration is that in this new situation the architecture of the hardware is

also chosen (optative), rather than given (indicative). This means that in the former

situation the hardware is part of the problem, and its use a requirement, whereas in

the latter situation the hardware is part of the solution and has effects in the problem

domain. Similar shifts in indicative and optative properties occur for example in the

selection of COTS components or the use of a reference architecture or framework,

where new requirements and architectural design decisions both need to cope with the

predefined architectural properties of the selected software.

Both ASRs and ADDs have similar effects on the development of software: they

indicate preferences for the direction in which the software should develop and prune

the design space by ruling out undesired alternatives. This similarity may only be

apparent if one does not regard architecture merely as structure, but embraces the view

that architectural design decisions are an important element of architectural knowledge.

Relations between architectural design decisions can be modeled as a ‘decision

loop’, in which ADDs introduce new design issues for which new ADDs need to be

taken. The theoretical underpinning of such a decision loop has been discussed in

Chapter 4. With this decision loop depicted in Fig. 14.2 in mind, we can explain the

similarity of ASRs and ADDs from an architectural knowledge point of view.

Suppose that we have a situation in which we need to build a KWIC component

that is highly extensible and has effective space performance, basically the same sit-

uation that we discussed in §14.2.1. Those requirements ask for several decisions to

be taken. In other words, the requirements introduce one or more decision topics,

most notably ‘how to limit the amount of data stored’. This decision topic can be ad-

dressed through various alternatives, such as ‘shared data’, ‘abstract data types’, and

‘implicit invocation’. When one of these alternatives, for instance ‘implicit invocation’,

is chosen (note that the way in which the alternatives are ranked depends on various

concerns, including ‘extensibility’) that alternative becomes an architectural design de-

cision which immediately leads to new decision topics (e.g., ‘how to distribute events

to components’).

Furthermore, the requirement that the KWIC component has effective space per-

formance may stem from a higher-level (possibly implicit) concern, in this case the

concern that the component can handle an increasing amount of data. Indeed, the

requirement that the KWIC component must have effective space performance could

itself be regarded as an architectural decision that addresses the requirement ‘must

cope with an increasing amount of data’; it tells how the system should cope with that

increase, although another alternative (e.g., ‘scalable data storage’) could have been

selected as well.

In short, an architectural design decision (or ‘solution’) for a requirement (or ‘prob-

lem’) inevitably introduces new ‘problems’. If the problem is ‘the system must be able
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Figure 14.2: Architectural design decision loop

to cope with an increasing amount of data’ and the solution is ‘by means of effective

space performance’ then one of the new problems is ‘the amount of data stored must be

limited’. In this decision loop, concerns (part of the problem) lead to decisions (part of

the solution) which lead to new concerns (again, part of the problem). In the example

above, effective space performance could just as well be regarded a requirement as an

architectural design decision, depending on who you ask – or rather: depending on

who has coined it, the requirements engineer or the architect. In any case, the need to

cope with an increasing amount of data is the reason (or rationale) behind the choice

for effective space performance. Note that the decision loop described here may ex-

tend beyond the architecture design phase; some architectural decisions may be taken

earlier, some later.

As in the architectural design decision loop, the idea of ‘rationale’ plays a role

in requirements engineering as well, for instance in ‘goal-oriented requirements en-

gineering’ or GORE (van Lamsweerde, 2001). Given any goal, by asking why that

goal is needed higher level goals can be found. The other way around, by asking how

a system may help satisfy a goal, that goal may be refined into new – lower level –

goals. Eventually, goals are refined to the level where every goal is realizable, either in

the environment or in the software. Those latter goals are the requirements, hence by
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means of goal refinement a hierarchical structure of goals and requirements develops.

In GORE, the decision loop described above appears in a requirements engineering

context. The same ‘how’ and ‘why’ questions used in goal refinement can be asked for

concerns and decisions in the decision loop. Indeed, even though architectural design

decisions are not an explicit part of the GORE refinement process, van Lamsweerde

(2003) maintains that “high-level architectural choices are already made during that

process” since “for each [refinement] decisions have to be made which in the end will

produce different architectures”.

We have now discussed various examples of problem and solution influencing each

other, and how this leads to ambiguity regarding whether to call something a require-

ment or a design decision. But haven’t we unnecessarily and unrealistically compli-

cated things by questioning the distinction between problem and solution in the first

place?

As it turns out, there seems to be evidence from the field of psychology that shift-

ing between problem and solution really occurs in human reasoning. Holyoak and

Simon (1999) discuss this bidirectional decision making, in which ‘the distinction be-

tween premises and conclusions is blurred’, much like our observation of the blurred

distinction between ASR and ADD. This type of decision making is thought to play a

role in the presence of complexity, conflict, and ambiguity; characteristics that accom-

pany most if not all software engineering situations in which architecture design and

requirements engineering would play a pivotal role.

14.4 Architectural Statements and the Magic Well

In a way, architecturally significant requirements and architectural design decisions

seem to accumulate in some kind of a ‘magic well’. Observers peering into the well

see what they wish for. People wishing to find architecturally significant requirements

will see architecturally significant requirements; people looking for architectural de-

sign decisions will find architectural design decisions. Hence, this magic well warps

the way architectural statements (i.e., ASRs and ADDs) are perceived depending on

the observer’s perspective, as shown in Fig. 14.3.

The well does not only determine how we perceive statements, but also affects

methods and techniques. Table 14.1 shows requirements engineering and software

architecture counterparts of actions that involve the well.

Both fields have their own particular methods and techniques to work with the

magic well. For instance, requirements engineering and architecture both have their

own standardized approaches to write down what is in the well. IEEE Std. 830 and

IEEE Std. 1471 are well known examples of recommended practices for requirements
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Table 14.1: Methods and techniques: Requirements engineering vs. architecture

Requirements
Magic Well Architecture

Engineering

Elicitation
Creation of statements

Decision making

Negotiation Trade-off analyses

Specification Drop statements in well Design

Validation Compare well contents with reality Assessment

Documentation Write down well contents Description

Requirements
Structure well contents

Architectural knowledge

management management

documentation and architecture description respectively.

Dropping freshly created statements in the well is akin to what requirements engi-

neers call specification, and what architects call design. Any elicited requirement or

architectural design decision has to be made explicit in one way or another. Not doing

so will undoubtedly result in the architectural statement being ignored, or even forgot-

ten, somewhere down the line. Both fields have their own preferred (not necessarily

disjunct) sets of techniques for expression, such as natural language text, ER diagrams,

UML diagrams, and other box-and-line diagrams.

Elicitation in requirements engineering puts a great deal of emphasis on elicita-

tion techniques, such as interviews, focus groups, use cases, and prototyping. Through
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negotiation, the priority or relative weight of each requirement is determined. Archi-

tecture, on the other hand, focuses more on choosing the right alternative and making

trade-off analyses. Requirements are not necessarily left implicit, but are processed less

formally in architecture. The Architecture Business Cycle (Bass et al., 2003), for in-

stance, clearly states the importance of addressing stakeholders and their requirements

and concerns throughout the architecting process, but does not provide any method-

ological pointers as to how to elicit those requirements. Note that in both requirements

elicitation and architectural decision making a certain amount of creativity is involved;

like requirements, architectural solutions may need to be discovered or invented first.

In both requirements engineering and architecture, validation is an integral part

of the process. Architecture validation is usually called assessment or evaluation.

The architecture community has devised various approaches to architecture assess-

ment that either focus on a single architectural quality such as modifiability (e.g.,

ALMA (Bengtsson et al., 2004)) or may consider various qualities (e.g., SAAM (Kaz-

man et al., 1994)) and the tradeoffs between them (e.g., ATAM (Kazman et al., 1999)).

Requirements validation typically follows a somewhat less formal approach with tech-

niques like inspections and reviews. Although the details of the methods differ, they

also have much in common. Both have well-defined process descriptions of how to go

about in a validation. But in practice, organizations often use a cafetaria-like approach,

in which they borrow method snippets that best fit the situation at hand. Methods

in both architecture assessment and requirements validation are often scenario-based.

And the results of both surpass the mere identification of errors.

Roeller et al. (2006) compared architectural design decisions with material floating

in a pond. “When not touched for a while, they sink and disappear from sight”. If one

just drops statements in the well and leaves them there, this is exactly what will happen.

Management of the architectural statements in the well has therefore received consid-

erable interest from the requirements engineering community and, more recently, the

architecture community. Both requirements management and architectural knowledge

management have to do with regarding the well not as an accumulation of statements,

but as an information repository. Both aim to impose a structure on the well’s contents

that captures the connections between individual requirements or architectural design

decisions.

14.5 Cross-fertilization

From Table 14.1 we can try to identify areas in which the architecture community

could benefit from a closer inspection of the state of the art in requirements engineer-

ing and vice versa. Apart from high-level models such as the Architecture Business
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Cycle (ABC), for instance, the architecture community seems to have hardly any stan-

dardization or best practices on elicitation. This may not be a big surprise, given that

the magic well probably leads us to believe that elicitation (of requirements) is not the

architect’s job. But on the other hand, the ABC puts quite a bit of emphasis on interac-

tion with stakeholders and understanding their requirements. Stakeholder concerns and

business goals play a major role for software architects as well, and using approaches

proven and tested in requirements engineering might pay off.

The most interesting area for cross-fertilization, however, is probably the area of

management. The emphasis on architectural design decisions and the subsequent fo-

cus on architectural knowledge and architectural knowledge management are a rela-

tively recent development in the architecture community. While this has led to many

promising initiatives over the short time span of only a few years, the requirements

engineering community has also been working on similar issues that the architecture

community now encounters. Both fields encounter challenges in areas such as trace-

ability, consistency, evolution, and rationale management.

Current initiatives in architectural knowledge management mainly focus on the de-

velopment of frameworks and models to capture architectural knowledge (cf. Chap-

ter 3, §3.4). Many architectural knowledge management initiatives seem to have some

overlap with approaches in requirements management.

In requirements engineering, goals play a role in many areas related to architectural

knowledge management, including traceability, conflict detection and resolution, and

exploration of design choices (Rolland and Salinesi, 2005). The requirements engi-

neering community has devised several methods to model goals, such as i* (Yu, 1997)

and KAOS (van Lamsweerde, 2001).

An example of a still relatively unexplored area in requirements engineering is that

of requirements interdependencies. Dahlstedt and Persson (2005) sketch a research

agenda with four major research areas: What is the nature of requirements interdepen-

dencies?; How can we identify requirements interdependencies?; How can we describe

requirements interdependencies?; and How do we address requirements interdependen-

cies in the software development process? In architectural knowledge management,

interdependencies (between architectural design decisions) play an important role as

well. The ontology of ADDs that Kruchten (2004) proposes, for instance, tries to ad-

dress some of the questions above from an architecture perspective. Especially in those

management areas where both communities are just beginning to find answers, close

collaboration and regular exchange of research results between the two communities

should be advantageous to all.
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15
Quality Criteria: Structure and Reuse

In this chapter, we propose an ontology for codification of quality criteria. With the sim-

ilarities between architectural design decisions and (quality) requirements – discussed

in Chapter 14 – in mind, we derive this ontology from a combination of three sources:

our own work in Chapter 4, the ontology for architectural design decisions proposed

by Kruchten (2004), and a collection of informally defined quality criteria used within

an industrial organization. The resulting quality ontology can be used to codify qual-

ity criteria and their interrelations. This ontology aids the reuse of predefined quality

criteria in the input phase of software product audits. We present a prototype imple-

mentation of a decision support system that aids auditors in their decision to include

or exclude certain quality criteria in a particular audit.

15.1 Introduction

In a software product audit, a customer asks an independent third party – the audit or-

ganization – to perform an assessment of the quality of a supplier’s product. Auditors

of the audit organization need to elicit the customer’s idea of ‘quality’ and compare it

with actual characteristics of the software product delivered by the supplier. Hence,

one of the first stages of a software product audit, is for the auditor to translate the

customer’s idea of quality – often expressed in terms of quality attributes such as “the

product should be scalable” or “security is important” – to certain quality criteria: con-

crete measures that should, or should not, be present in the product. For example,

in a system where security is important, proper user authentication is a likely quality

criterion; without such authentication the necessary level of security is unlikely to be

reached.

Whether or not a measure should be present in a software product is often a matter
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of trade-offs. For example, when user-friendliness is essential, there may arguably be

no user authentication measures present; on the other hand, when security is essential

user authentication measures are mandatory. If both security and user-friendliness are

important, the appropriateness of authentication measures depends on which of the two

has precedence. Such trade-offs imply that deciding on a particular quality criterion –

i.e., whether or not a particular measure should be present – can be hard.

Software product audits should not be regarded as isolated projects. Rather, indi-

vidual audits affect each other even if they target unrelated software products. For

instance, lessons learned in one project might be applicable to another. Moreover, the

applicability of certain quality criteria is not limited to a single project alone. Similar

projects might use similar quality criteria, and some general quality criteria might even

be applicable to virtually all software products. For example, in high-security systems

some form of user authentication will always be needed.

In short, many quality criteria are reusable assets. However, even though there is

a gradual increase of interest to use ontologies to capture architectural knowledge, in

particular architectural design decisions, there are currently no models known from

literature that support the structured codification of quality criteria for reuse. More-

over, while ontologies seem a viable approach to codification, the application of such

codified knowledge to everyday practice may be non-trivial. In particular, browsing

and searching an architectural knowledge repository for effective reuse can be cumber-

some.

Consequently, reuse of quality criteria tends to occur on an ad-hoc basis, and may

involve rereading past audit reports to identify previously used criteria applicable to

the situation at hand. Some audit organizations may take this one step further and col-

lect reusable criteria in a central location. As part of our research into reuse of quality

criteria, we collaborated with DNV, who experienced difficulties in reusing applica-

ble quality criteria from past projects, despite attempts to create a central repository.

Since this repository essentially consisted of a list of quality criteria linked to qual-

ity attributes, important additional knowledge including dependencies between criteria

could not be captured.

In this chapter, we draw on architectural knowledge management theory to propose

QuOnt, an ontology that supports codification of quality criteria with reuse as primary

goal. The use of ontologies to codify architectural knowledge fits a general trend, as we

shall see in §15.3. To support reuse, we must pay particular attention to the relation-

ships between quality criteria and quality attributes, as well as the interrelationships

between quality criteria themselves. To this end, in §15.2 we first briefly describe how

quality criteria can be viewed as decisions that determine the ‘soll’ architecture of a

software product. In §15.4 we then draw analogies between Kruchten’s ontology of

architectural design decisions and the repository structure that originated in DNV from
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their experience with quality criteria. Based on overlap and distinctions between the

two structures, we derive our proposed ontology for quality criteria in §15.5. We then

demonstrate in §15.6 how criteria codified according to QuOnt can be visualized us-

ing ontology-driven visualization – ODV, a novel type of visualization of architectural

design decisions – and how ODV provides decision support for auditors to determine

which quality criteria should be used in an audit. This decision support consists of three

main elements: 1. support for trade-off analysis, 2. support for impact analysis, and

3. support for if-then scenarios. This demonstration shows how QuOnt supports reuse

of quality criteria and therewith solves the shortcomings of ad hoc reuse of quality

criteria. We finish our discussion in §15.7 with an explanation of the design rationale

behind the decision support system, and especially the ontology-driven visualization

that it uses.

15.2 Quality Criteria: Deciding the SOLL-Architec-

ture

Architectural knowledge in software product audits exists on at least two levels.

First, there is architectural knowledge that relates to the actual state of the software

product. This knowledge originates from the product’s supplier, and in its codified

form can be found in product artifacts such as code and documentation. Secondly, there

is architectural knowledge that relates to the desired state of the software product. This

knowledge originates from the customer, is enhanced by the auditor, and takes the form

of what we call ‘quality criteria’.

Quality criteria are in a way similar to what Bass et al. (2003) call ‘tactics’. Both

relate architectural choices to their effect on quality attributes. A major distinction,

however, is that tactics are usually employed from an optimistic perspective: as poten-

tial improvements in a forward engineering sense. Therefore, the focus is on tactics as

contributors to the system’s quality (e.g., improve or attain security through user au-

thentication). Quality criteria, on the other hand, have an inherently more pessimistic

nature; they need not always be a representation of measures that contribute to the

desired quality level. Instead, when a certain measure is known to inhibit the desired

quality level, a quality criterion could be that that measure should not be present in the

software product. Quality criteria may thus be expressed as an explicit rejection of a

particular design option.

For example, ‘authenticate users’ could indeed be a quality criterion for a system

in which security is an important quality attribute. In that case, the quality criterion

resembles (or maybe even equals) the idea of a tactic, in that it represents a contribution

237



CHAPTER 15. QUALITY CRITERIA: STRUCTURE AND REUSE

to attainment of the desired level of security. On the other hand, when security is

not important but, let’s say, user-friendliness is the prime target, the applicability of

‘authenticate users’ as a tactic disappears. As a quality criterion, however, it is still an

important consideration, since a system in which users are required to authenticate is

less user-friendly than a system without authentication mechanisms. Hence, an auditor

might still want to look for authentication mechanisms in the system, motivated by the

fact that authentication actually lowers the system’s quality (i.e., user-friendliness) and

therefore should not occur. Obviously, in a realistic situation the desired level of quality

will never be expressed in terms of either security or user-friendliness, but one quality

attribute may be preferred over the other. In any case, in a software product audit it is

important to know of any positive and negative effects of a design choice in order to

determine whether that choice is allowed or even required to attain the desired level of

quality.

The resemblance between quality criteria and tactics is indicative of the dual na-

ture of quality criteria: they are a reflection of quality requirements pertaining to the

software product, but at the same time show characteristics of design decisions. This

directly relates the concept of quality criteria to other studies that discuss the charac-

teristics of architectural knowledge, many of which employ a decision-oriented view

on architecture and design. Indeed, ‘decisions’ can be seen as an umbrella concept that

unifies different views on architectural knowledge (cf. Chapter 3).

In Chapter 4, we discussed how architectural design decisions are related through

what essentially is a decision loop. This loop reflects how architectural design decisions

introduce new design issues for which new decisions need to be taken. One of the

implications of this loop is that there is no clear-cut distinction between architecturally

significant requirements and architectural design decisions. In fact, we have argued in

Chapter 14 that requirements and decisions are similar statements, only viewed from

different angles. This similarity shows again in the role of quality criteria in a software

product audit. Thus viewed, the quality criteria gathered in the input stage of the audit

process can be seen as a set of architectural design decisions that outline the desired

state, or Soll-architecture, of the software product.

15.3 Ontologies and Reasoning Frameworks for

Architectural Knowledge

The software architecture community is showing a gradual increase of interest to use

ontologies to capture architectural knowledge, in particular architectural design de-

cisions. Several researchers have proposed ontologies or reasoning frameworks for
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software architecture and software quality. Some of the proposed ontologies are very

generic and aim to cover a broad range of software architecture concepts (e.g., (Babu T

et al., 2007). Other ontologies and reasoning frameworks are focused more on quality

aspects. Unfortunately, none is directly applicable to the selection of quality criteria in

the input stage of a software product audit.

SEI’s ArchE tool (Diaz-Pace et al., 2008), for instance, serves a goal that is similar

to ours. It targets, albeit from a forward engineering point of view, guidance of the

architect in selecting the right tactics given certain quality requirements. However, it

relies on quantitative reasoning models, which are available for some quality attributes

(e.g., performance or modifiability) but not for others (Bachmann et al., 2003). This

limits its applicability to only a subset of the quality attributes that one may need to

consider in a software product audit.

Erfanian and Shams Aliee (2008) propose an ontological approach to architecture

evaluation. Their approach differs from ours in that it targets the throughput stage of

a quality assessment. In their method, the actual architecture of the software system

is formally codified and compared with a set of tactics and their effects on quality

attributes. Our work, on the other hand, targets selection of quality criteria in the input

stage of a quality assessment, and therefore does not rely on the formal codification of

the actual architecture.

Another quality related ontology originated in the context of service engineering.

SECSE’s Quality of Service ontology (QoSont) bridges a potential semantic gap be-

tween service suppliers and service consumers by providing thorough definitions of

Quality of Service properties and their metrics (Sawyer and Maiden, 2009). Although

this ontology provides a formal approach to quality attribute specification, it does not

address the way in which the desired level of quality can or cannot be attained. This

black box perspective on quality contrasts with the white box perspective of our work.

Kruchten (2004), finally, has proposed an ontology for architectural design deci-

sions. This ontology has been driven mainly by the need to document architectural

design decisions, either on-the-fly or after-the-fact, to support evolution and mainte-

nance of complex software-intensive systems. Unlike the ontology we propose, it has

not been specifically designed to support reuse of preexisting knowledge. Neverthe-

less, given our perspective on quality criteria as architectural design decisions for a

Soll-architectureas it exhibits many features that can be translated to the world of qual-

ity criteria, as we shall see in §15.4.
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15.4 Crises and criteria

In this section, we further analyze the commonalities between quality criteria and archi-

tectural design decisions, and how this affects a prospective quality criteria ontology.

Kruchten (2004) argues that there are three major classes of decisions (or ‘crises’):

ontocrises (existence decisions, with their counterpart anticrises or non-existence de-

cisions), diacrises (property decisions), and pericrises (executive decisions). Likewise,

we can distinguish three analogous major classes of criteria, each of which has to be

assessed using a different approach:

∙ Ontocriteria (existence criteria) represent concrete elements or artifacts that must

appear in the software product. Anticriteria, their counterpart, represent ele-

ments that must not appear in the product. Both ontocriteria and anticriteria can

be traced to a single product artifact. An example of an ontocriterion could be

‘there must be a custom API for communication with back-end systems’. An

example anticriterion could be ‘there must be no code duplication’.

This class of criteria are the easiest to assess, since finding a single instance of

some element in the software product suffices to prove (for ontocriteria) or dis-

prove (for anticriteria) that the product satisfies the criterion. However, most

ontocriteria need to be complemented with diacriteria, another class of criteria,

since the mere presence of a certain element in the product is not enough to war-

rant the desired level of quality. In the case of the above example, the existence

of the API must be followed by its use. In actual software product audits, those

complementary criteria may be implied by the ontocriterion instead of being

fully specified.

∙ Diacriteria (property criteria) represent properties (‘overarching traits’) that hold

for the whole system and cannot be traced to a single product artifact. An ex-

ample diacriterion could be ‘The rationale of design decisions must be docu-

mented’, or – as a complement to the example ontocriterion above – ‘All com-

munication with back-end systems must use the custom-made API’. Diacriteria

can be quite difficult to assess, since they cannot be traced to a single artifact

and therefore require a full and thorough examination of the complete software

product. A feasible alternative is to assess diacriteria using spot checks.

∙ Pericriteria (executive criteria) are criteria that are not directly related to the

software product’s properties or quality attributes, but to criteria surrounding the

audit process itself. An example pericriterion could be ‘All stakeholders agree

on the evaluation plan’. Whenever pericriteria are not satisfied, the quality of the

audit process itself is in jeopardy.
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Figure 15.1: A comparison of quality criteria and design decision attributes

In addition to different classes of decisions, Kruchten specifies several attributes

that have an almost one-to-one correspondence with quality criteria. Fig. 15.1 shows a

comparison between attributes from DNV’s quality criteria repository and Kruchten’s

architectural design decisions.

From Fig. 15.1 we see that the decision attributes epitome, rationale, cost, and

scope have a direct counterpart in the quality criteria repository, with one notably dif-

ferent interpretation: for quality criteria, the ‘cost’ involved in selecting a criterion

relates to the feasibility of assessing the product’s conformance with that criterion.

There are also some differences between the two models, which are a direct result of

the different use goals of the repository (reuse) and ontology (documentation):

∙ Attributes related to a decision’s life cycle (state, author, timestamp, history) are

not present in the repository;

∙ Attributes related to a quality criterion’s assessment strategy are not present in

the decision ontology;

∙ Since the decision ontology inherently models product-specific decisions, there

are no ‘sources’ to keep track of;

∙ The risk related to (non-compliance with) a quality criterion would be the out-

come of an audit process and would not be part of the input, hence there is no
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‘risk’ attribute in the repository.

There are also several comparable attributes that have slightly different representa-

tions in the two models:

∙ Categories in Kruchten’s ontology are much like tags. They form an open-ended

list that may include concerns and quality attributes. In the repository, qual-

ity criteria are explicitly related to one or more quality attributes. Likewise, in

our ontology we shall draw on the notion of concerns (which include quality at-

tributes) as first class entities. This notion is central to the decision loop that is

part of our core model of architectural knowledge (Chapter 4), and enables us

a) to further define relations between quality attributes to form a quality model

such as the ISO 9126 quality model (ISO/IEC 9126-1), and b) to make inferences

(including trade-off analyses) from the relations between criteria and quality at-

tributes (and between quality attributes themselves).

∙ Relations are much more extensively defined by Kruchten than in the reposi-

tory, where they are just a textual description of ‘consequences’. Kruchten rec-

ognizes 10 types of decision-to-decision relationships that can be transferred di-

rectly to criterion-to-criterion relationships. Two additional relationships (‘traces

from/to’ and ‘does not comply with’) are the type of relationships auditors would

use during the throughput stage of an audit to relate quality criteria to architec-

tural design decisions and other artifacts in the software product (e.g., method X

in class Y does not comply with criterion ‘no code duplication’).

Finally, from discussions with DNV’s auditors we know that, apart from direct rela-

tionships between criteria, one other important piece of knowledge should be captured

that is neither present in the existing quality criteria repository, nor in Kruchten’s de-

sign decision ontology. In essence, the effects from quality criteria on quality attributes

must be reified, so that comparisons between the effects can be made. This makes it

possible to capture such statements as ‘1024 bit encryption has a higher positive effect

on security than 512 bit encryption’.

15.5 QuOnt: An Ontology for the Reuse of Quality

Criteria

Fig. 15.2 depicts the essential concepts and relationships of QuOnt, our proposed on-

tology of quality criteria, based on our analysis from the previous section. It consists

of the following elements:
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Audit
Effect
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isRelatedTo
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Figure 15.2: The QuOnt ontology

QualityCriterion is the ontology’s main element. As discussed in §15.4, it has the

attributes name, description, motivation, validation, remarks, feasibility, and scope.

The four types of criteria – ontocriteria, anticriteria, diacriteria, and pericriteria – are

modeled as subclasses of this element. The isRelatedTo relationships capture how a

quality criterion can be related to other quality criteria (discussed in more detail below).

QualityAttribute represents a quality attribute that can be further specialized in subat-

tributes. For example, in ISO 9126 ‘efficiency’ is further divided into ‘time behaviour’,

‘resource utilisation’, and ‘efficiency compliance’ (ISO/IEC 9126-1).

Effect is a reified relation from criterion to quality attribute, having two attributes:

effect type (positive or negative) and [0 . . . n] reciprocal relations to other ‘effect’ rela-

tionships, which indicate the relative strength (stronger than, weaker than, or compara-

ble) of the ‘effect’ relations.

Audit models a software product audit in which particular quality criteria have been

used to assess a prioritized set of quality attributes. The usedIn relation captures the re-

lation between criteria and audits. The priorityIn relation captures the relation between

quality attributes and audits.
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We recognize ten ways in which criteria can be related. Following the expression of

Kruchten’s decision relations in terms of the core model’s decision loop elements (cf.

Chapter 4, §4.6.3), these different types of relationships can be expressed as constraints

on a QuOnt ontology instance. Let x and y be quality criteria, let relationx,y denote a

relation from criterion x to criterion y, and let usedInx denote the use of criterion x in

an audit (i.e., the decision that the measure prescribed or ruled out by x must be present

in respectively absent from the audited software product). Then the ontological con-

straints from Table 15.1 hold on the relationships between x and y. These constraints

on the one hand confine the facts that can be specified in a QuOnt-based knowledge

base, and on the other hand may act as production rules that support the selection of

quality criteria.

In the remainder of this chapter, we mainly focus on five types of relationships:

constrains, subsumes, conflicts/forbids, and alternative. First, when a quality criterion

x constrains another criterion y, y cannot be used in the audit unless x is also used

(C2). Second, when a quality criterion x subsumes another criterion y, the use of x

implies the use of y (C6). Third, when criterion x conflicts with criterion y, x forbids y

and y forbids x (C8); this means that when x is used, y may not be used and vice versa,

unless the decision is made that y overrides x (C5). Finally, when criterion x is an

alternative to criterion y, x and y cannot both be used at the same time (C9). This is a

transitive relation (C10). Of the remaining five relationships, enables and overrides are

not supported by the particular reasoning engine our decision support system uses (see

also §15.7); isBoundTo and depends are shorthands for combinations of other relations;

and comprises can be seen as a trivial extension of constrains.

15.6 QuOnt in Action: Selecting Quality Criteria

for Reuse with Ontology-Driven Visualization

While ontologies seem a viable approach to capture architectural knowledge, the ap-

plication of such codified knowledge to everyday practice may be non-trivial. In par-

ticular, it can be difficult to explore and search an architectural knowledge repository

so that previously captured knowledge can be reused. A demonstration to the auditors

of DNV of an early prototype of a quality criteria knowledge base (Loza Torres, 2008)

revealed the need for proper visualization of the knowledge base’s contents.

In their early work on the visualization of codified architectural design decisions,

Lee and Kruchten (2008) distinguish four types of visualization: a simple decision

table showing design decisions with their attributes and a separate table of relations

between decisions; a decision structure visualization showing decisions and their rela-
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Table 15.1: Relations as constraints on a QuOnt instance
Relation Constraints

enables C1 ∀x, y : enablesx,y ⇒ ¬constrainsx,y
constrains C2 ∀x, y : constrainsx,y ⇒ (¬usedInx ⇒ ¬usedIny)

isBoundTo C3 ∀x, y : constrainsx,y ∧ constrainsy,x ⇒ isBoundTox,y

C4 ∀x, y : isBoundTox,y ⇒ isBoundToy,x

forbids C5 ∀x, y : forbidsx,y ⇒ (usedInx ⇒ ¬usedIny) ∨ overridesy,x
subsumes C6 ∀x, y : subsumesx,y ⇒ (usedInx ⇒ usedIny)

conflicts C7 ∀x, y : conflictsx,y ⇒ forbidsx,y ∧ forbidsy,x
overrides C8 ∀x, y : overridesx,y ⇒ forbidsy,x ∧ usedInx

alternative C9 ∀x, y : alternativex,y ⇒ ¬(usedInx ∧ usedIny)
C10 ∀x, y, z : alternativex,y ∧ alternativey,z ⇒ alternativex,z

comprises C11 ∀x, y : comprises
x,y1,2,...,n

⇒ (¬usedInx ⇒ ¬usedIny1
∧

¬usedIny2
∧ . . . ∧ ¬usedInyn)

depends C12 ∀x, y : depends
x,y

⇒ constrainsy,x ∨ comprises
y,x

∨
overridesx,y

tions as nodes and edges in a graph; a decision chronology visualization showing how

decisions evolve; and a decision impact visualization that shows which decisions may

be impacted by a change. They conclude that more case studies, and also additional

visualization techniques, may be required.

According to Lee and Kruchten, decision tables are the most often used type of

visualization for browsing. Yet, such a view has several drawbacks. Most notably, a

basic list or table is not very effective in showing relationships. As such, it ignores

much of the added value of using an ontology. On the other hand, a decision-structure

visualization, which seems to be the most natural visualization for a decision ontology,

has drawbacks too. While it accurately represents decisions and their relationships, the

resulting graph can become cluttered and thus incomprehensible for all but the smallest

data sets. Moreover, a graph-like visualization entails quite a radical deviation from the

tabular view on information that many practitioners are most accustomed to.

In this section, we shall present a decision support system based on QuOnt and an

ontology-driven visualization (ODV) that combines the strengths of the decision-table

and decision-structure visualizations, and overcomes their drawbacks. This visualiza-

tion revolves around two tabular views that show design decisions and their mutual

relations, respectively. While not unlike Lee and Kruchten’s decision/relationship ta-

bles, our visualization adds to the standard tabular view the capability to infer on-the-fly

several decision attributes (i.e., columns) from the structural information captured by

the decision ontology. Moreover, we provide several easy-to-use interaction and visual
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highlighting mechanisms that simplify the process of decision-making in the poten-

tially large and complex state space implied by the underlying ontology. Overall, our

aim is to enable users to employ the added value of a decision ontology without losing

the simplicity of tabular information visualization.

We present the decision support system by means of three usage scenarios derived

from an auditor’s actual practice and described step-by-step. Although different deci-

sion support elements are present in all scenarios, each scenario focuses on a particular

aspect of the decision support provided by the ontology-driven visualization; the first

scenario focuses on trade-off analysis, the second on impact analysis, and the third on

‘if-then’ scenarios. For reasons of confidentiality, we are not able to disclose quality

criteria used by DNV. We therefore instantiate the ontology with several tactics de-

scribed by Bass et al. (2003, Ch.5), since – as we have seen in §15.2 – tactics may serve

as quality criteria, provided their positive and negative effects on quality attributes are

taken into account.

Throughout the scenarios, we shall refer to different widgets, or areas, of the user

interface as follows (see also Fig. 15.3)1. The ‘Quality attribute tree’ shows the hi-

erarchy of quality attributes according to a particular quality model, in this case the

extended ISO-9126 or ‘Quint’ model (van Zeist et al., 1996). The ‘Quality attributes of

interest’ area shows the quality attributes of interest, which capture the customer’s idea

of ‘quality’ and are an input to the remainder of the audit. The ‘Effect matrix’ shows

the quality criteria relevant to the current audit. Relevant criteria are those criteria that

have a positive or negative effect on one or more attributes of interest, as well as criteria

for which it is determined that they should or should not be present in the product. The

‘Criteria matrix’ shows the relations between quality criteria. All areas are correlated

by means of interactive selection and drag-and-drop operations, thereby allowing the

auditor to both construct and query data to support different audit scenarios.

15.6.1 Scenario 1: Trade-off analysis

In the first scenario, an auditor uses ontology-driven visualization of a QuOnt instance

to perform a trade-off analysis for determining which quality criteria to include in an

audit. The audit is done on behalf of BSO, a fictional enterprise that wants to assess

the quality of a new human resource management (HRM) system being developed by a

third-party, which will allow employees to view salary statements and request holiday

leave. Together with BSO, the auditor establishes that this HRM system should be

firstly secure, secondly user-friendly, and finally also easily changeable, since BSO’s

1Full-color versions of the screenshots in this section have been included in the digi-

tal version of this thesis (available through VU-DARE) and can be obtained separately from

http://www.cs.vu.nl/˜remco/Ch15-figures.pdf
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Figure 15.3: Decision support system - visualization overview

internal IT department will eventually do the maintenance. Based on this prioritized

list of quality attributes (1. security, 2. user-friendliness, 3. changeability), the auditor

now needs to determine which quality criteria should be used in this audit.

We assume the audit organization has used QuOnt to codify quality criteria from

previous audits (not described here). Fig. 15.4 shows a part of the knowledge base

available for this audit, comprised of a QuOnt instance. We deliberately consider only

part of the knowledge base, so we can focus on just three interrelated quality criteria

relevant in our audit. This instance is valid under the constraints outlined in Table 15.1,

and consists of the following elements:

OntoCriterion OC1 USE PASSWORDS

OntoCriterion OC2 SINGLE SIGN-ON

DiaCriterion DC1 AUTHENTICATE USERS
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Single sign-on
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User-
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Figure 15.4: Ontology instance for scenario 1

Effect E1 OC1 hasPositiveEffectOn Security

Effect E2 OC2 hasPositiveEffectOn Security

Effect E3 OC1 hasNegativeEffectOn User-friendliness

Effect E4 OC2 hasNegativeEffectOn User-friendliness

Effect E5 OC1 hasNegativeEffectOn Changeability

Effect E6 OC2 hasNegativeEffectOn Changeability

Relation R1 E1 comparableTo E2

Relation R2 E3 strongerThan E4 (consequently E4 weakerThan E3)

Relation R3 E5 weakerThan E6 (consequently E6 strongerThan E5)

Relation R4 OC1 alternativeTo OC2
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Relation R5 DC1 constrains OC1

Relation R6 DC1 constrains OC2

In short, the criteria USE PASSWORDS and SINGLE SIGN-ON are alternatives that

are both constrained by AUTHENTICATE USERS. Both of them have a comparable

positive effect on security. While the negative effect of the use of passwords on user-

friendliness is stronger than that of single-sign on, its negative effect on the product’s

changeability is weaker.

Quality attribute selection

Given a list of prioritized quality attributes, the knowledge base can be used to support

the auditor’s decisions which quality criteria could be included. In short, criteria with

a known effect on one of the high-priority quality attributes (including the attribute’s

sub-characteristics), should serve as an assessment baseline in the throughput stage

of the audit. The auditor’s first task, therefore, is to select and prioritize the quality

attributes to be used in his audit.

Priorities are quantified on a scale from 1 (lowest) to 100 (highest). The audi-

tor usually elicits these values directly from the customer, e.g., using the ‘100-point

method’ (or ‘hundred-dollar test’ (Leffingwell and Widrig, 2003)) or similar workshop

techniques. When such a workshop is infeasible, the auditor may assign a score to

the (ordinal) prioritization expressed by the customer, e.g., 100 to the highest-priority

quality attribute, 90 to the second highest, and so on.

The ODV supports interactive prioritizing of attributes: quality attributes can be

dragged from the attribute tree and dropped in the list of quality attributes of interest

below. Fig. 15.5 (step 1) shows this for the ‘security’ attribute. As part of the drop

action, the user is asked to enter the priority score of the selected attribute (Fig. 15.5,

step 2).

As soon as a quality attribute has been selected and prioritized, the tool inspects

the underlying ontology and updates the effect matrix to display all quality criteria that

have an effect on any of the quality attributes of interest. Fig. 15.5 (step 3) shows the

criteria USE PASSWORDS and SINGLE SIGN-ON, in the effect matrix, which both have

an effect on the ‘security’ attribute that was just selected. Just as for ‘security’, the

auditor selects and prioritizes the two other attributes of interest, ‘user-friendliness’

and ‘changeability’, with a score of 50 and 25, respectively. Fig. 15.6 shows the result.

Effect matrix

The effect matrix has a row for each quality criterion relevant to the current audit, and

several columns as follows. The rightmost n columns describe each of the n quality
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Figure 15.5: Selection and prioritization of relevant quality attributes for an analysis

scenario

attributes of interest. A cell at (row=i,column=j) in these columns is colored red,

green, or white to show that criterion i has a negative, positive, and respectively no

effect on quality attribute j. In Fig. 15.6, there are n = 3 such columns (the rightmost

ones) for our three attributes of interest: security, changeability, and user-friendliness.

We see that both criteria have a positive effect on security, and a negative effect on

changeability and user-friendliness.

The effect matrix has two additional columns: ‘negative rank’ and ‘positive rank’

(columns 4 and 5 in Fig. 15.6). These show the overall negative, respectively positive

effects of a quality criterion on all quality attributes, using scaled color bars. Longer

bars represent higher values (also shown numerically2). Negative-rank bars are shaded

from transparent gray (low values) to saturated red (high values). Positive-rank bars

are shaded from transparent gray (low values) to saturated green (high values). In this

way, the user’s attention is strongly drawn to high positive or negative values, whereas

low values are less prominent (Spence, 2007). In our example in Fig. 15.6 we see

that, although the overall positive effect of both criteria USE PASSWORDS and SINGLE

SIGN-ON is comparable, the overall negative effect of USE PASSWORDS exceeds that

of SINGLE SIGN-ON (longer bar in column 4, row 2 than in column 4, row 1). This

shows that, while both quality criteria have a comparable positive effect on security,

USE PASSWORDS has a larger negative effect on user-friendliness (the second-highest

2We calculate these values using partial ordering (Carlsen, 2008). The score of a quality attribute is

divided by the average rank of a criterion in the set of criteria partially ordered on effect strength. In Fig. 15.6,

the negative value 62 for USE PASSWORDS, for example, is given by 50

1
+

25

2
, since the average rank of USE

PASSWORDS based on the strength of its effect on user-friendliness is 1, and for its effect on changeability 2.
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Figure 15.6: Effect matrix, all attributes of interest

priority quality attribute) than SINGLE SIGN-ON.

Having seen this, the auditor decides that SINGLE SIGN-ON is a criterion that

should be present in the audited software. This is done by clicking the ‘should be

present’ column checkbox for SINGLE SIGN-ON (row 2, column 1, see Fig. 15.7). A

similar column with checkboxes for ‘should not be present’ quality criteria is provided

in the effect matrix. Using these inputs, auditors can indicate which mix of quality

criteria best matches the client’s requirements.

As soon as the auditor makes his decision by (un)checking a quality criterion, a

reasoning engine dynamically inspects the ontology to determine which new facts can

be inferred. In this case, since USE PASSWORDS and SINGLE SIGN-ON are alterna-

tives, they cannot be both present in the software product (cf. C9 in Table 15.1 and

Fig. 15.4). Hence, from the auditor’s decision that SINGLE SIGN-ON should be present

in the product, the reasoning engine infers that USE PASSWORDS should not be present;

the checkbox ‘should not be present’ of criterion USE PASSWORDS is automatically

checked and its name grayed out to reflect this. Moreover, since AUTHENTICATE

USERS constrains SINGLE SIGN-ON, the presence of SINGLE SIGN-ON implies that

AUTHENTICATE USERS should also be present; so the checkbox ‘should be present’

of criterion AUTHENTICATE USERS is checked accordingly, and the inference engine

adds AUTHENTICATE USERS to the effect matrix. This inference is done automatically,

and enables the ontological relations to be reflected directly in the effect matrix. The

updated matrix showing which measures should be present is shown in Fig. 15.7. In

this image, the auditor can see all quality criteria for this audit: the HRM system 1.

should provide user authentication, 2. should provide a single sign-on facility, and 3.

should not use passwords.

This simple scenario shows how the system supports the auditor in deciding which
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quality criteria to use. The decision input uses the visualized attribute trade-offs, shown

as high or low positive or negative ranks. Typical decision-making will have measures

with a high positive rank present in the software product, and avoid measures with a

high negative rank. When the user records his decision, the reasoning engine deter-

mines and visualizes the impact of that decision on other quality criteria. This impact

can be analyzed for further decision refinement, as described in the next section, for a

more complicated scenario.

15.6.2 Scenario 2: Impact analysis

In this scenario, the auditor has the same goal as in scenario 1: assess the quality of

an HRM system. This time, however, we will examine a larger part of the knowledge

base, and consider more quality criteria than in the first scenario.

Fig. 15.8 shows a total of eleven criteria. Three criteria (INFORMATION HIDING,

Figure 15.7: Selection and inference of quality criteria
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USE INTERMEDIARY, and MAINTAIN INTERFACE) have a positive effect3 on change-

ability. Three other criteria (USE JAAS, DEVELOP IN-HOUSE AUTHENTICATION

MODULE (or DEVELOP IN-HOUSE for short), and USE COM+ SECURITY CALL) have

a positive effect on security. Additionally, the criterion USE INTERMEDIARY has a

negative effect on performance due to the overhead it introduces. The other criteria

have no direct effect on any quality attribute.

Again, the customer indicates that for the HRM system security is the most impor-

tant quality attribute, followed by user-friendliness and changeability. Additionally, the

customer stresses that the product should be built in Java, since his internal IT depart-

ment only has experience with Java maintenance. Because of the upfront requirement

that Java should be used, the auditor starts with a preselected criterion TARGET JAVA

PLATFORM, even though no quality attributes have been selected yet (Fig. 15.9).

Just as in scenario 1, the auditor selects and assigns priorities to the quality at-

tributes of interest, and views all quality criteria inferred by the tool. With ‘security’

being the most important quality attribute, the auditor wants to analyze which quality

criteria have an effect on security. Hence, he sorts the effect matrix on the ‘security’

column by clicking the column’s label. Now the quality criteria with the highest effect

on security are placed at the top of the effect matrix, as shown in Fig. 15.10(a) (top

image). These are the topmost three rows of the effect matrix, all having green cells

in the ’Security’ column; all three effects are positive. Out of these, USE COM+ SE-

CURITY CALL, has been marked ‘should not be used’ by the reasoning engine, since

it is constrained by TARGET DOTNET PLATFORM which in turn conflicts with the ini-

tially preselected criterion TARGET JAVA PLATFORM (cf. Fig. 15.8). This leaves the

auditor with two security-related criteria to choose from: USE JAAS and DEVELOP

IN-HOUSE.

Criteria matrix

Since USE JAAS and DEVELOP IN-HOUSE both have a comparable positive effect

on security, both are eligible to be selected as practices that should be present in the

audited product. To further decide, the auditor wants to inspect the relations between

criteria. Our tools supports this task with its third and last area: the Criteria matrix

(Fig. 15.10(a) bottom). This area shows all relations between quality criteria as an ad-

jacency matrix. Each relation, i.e., matrix cell, is colored using the color scheme shown

in Fig. 15.10(b). Red cells show relations that, when the auditor decides a particular

3For presentation conciseness, we assume that the strengths of all effects on a particular quality attribute

are comparable. Hence, Fig. 15.8 only indicates that a criterion has a positive (’+’) or negative (’-’) effect

on an attribute, followed by the attribute’s name. Unlike in Fig. 15.4, we do not draw relations between the

effects that indicate their relative strength so the diagram remains readable.
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Figure 15.8: Ontology instance for scenario 2
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Figure 15.9: Predefined user requirement

criterion should be used, inhibit the use of some criteria (i.e., ‘forbids’, ‘conflicts’, ‘al-

ternative’); green cells show relations that imply the use of some criteria (‘constrains’,

‘subsumes’); blue cells show aggregation (‘subsumes’, ‘comprises’); purple denotes

generic relations whose nature is not further specified (‘relatedTo’). Brushing with the

mouse over the matrix cells shows tooltips with details on the relations. For example,

the mouse over the cell (USE STANDARD APIS, USE INTERMEDIARY) in Fig. 15.10(a)

shows that “USE STANDARD APIS subsumes USE INTERMEDIARY”.

Often, users want to focus on the quality criteria that are most relevant from the

perspective of a chosen criterion of interest. We support this easily as follows. Clicking

on a row or column label in the criteria matrix sorts the rows of this matrix so that the

criterion of interest, corresponding to the clicked row or column, is placed first (at top)

and the criteria that have a direct relation with that criterion are placed immediately

thereafter. For example, Fig. 15.10(a) shows the criteria matrix sorted on the criterion

DEVELOP IN-HOUSE.

Using the criteria matrix, the auditor observes that USE JAAS and DEVELOP IN-

HOUSE are alternatives, hence only one of them can be present. Moreover, there are

some conflicting (red) and enabling (green) relations from USE STANDARD APIS to

both criteria. Also, USE STANDARD APIS has relations with other criteria such as

INFORMATION HIDING and MAINTAIN INTERFACE, some of which have yet more

relations with other criteria, as shown by the corresponding colored cells in the criteria
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Figure 15.10: Security-related analysis
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matrix in Fig. 15.10(a). This means that a decision on either USE JAAS or DEVELOP

IN-HOUSE can have ripple effects on other criteria. Even though the auditor could

examine the criteria matrix to trace those effects, it is difficult to see at once which of

the two criteria he should expect to be present.

With the security-related alternatives at a tie, the auditor shifts his focus to the

next highest-priority quality attribute. Since user-friendliness has neither positive nor

negative effects associated with it, the auditor directs his attention to changeability.

Fig. 15.11 (step 1) shows the effect matrix ordered on the criteria’s effect on change-

ability, i.e., with the four changeability-related criteria USE STANDARD APIS, INFOR-

MATION HIDING, USE INTERMEDIARY and MAINTAIN INTERFACE at the top. From

the criteria matrix in this image, we see (step 2) that USE STANDARD APIS and MAIN-

TAIN INTERFACE (top-left corner of the matrix) are alternatives. Since the former has

a higher overall positive rank than the latter (25 vs 12, as shown by the ‘positive rank’

column in the effect matrix in Fig. 15.11), USE STANDARD APIS is a good candidate

to select as a practice required in the software product. Moreover, there are no rela-

tions between that criterion and the other changeability-related criteria INFORMATION

HIDING and USE INTERMEDIARY that inhibit its selection (i.e., no red cells on the

intersection of the top matrix row and the 6th and 7th columns). Hence, the auditor

decides that USE STANDARD APIS should be present and checks its ‘should be used’

column accordingly (Fig. 15.11 step 3).

After the selection of USE STANDARD APIS, the reasoning engine automatically

infers which of the other criteria should or should not be present. The result is shown

in Fig. 15.11 step 4. We see that, in addition to USE COM+ SECURITY CALL, crite-

ria MAINTAIN INTERFACE and DEVELOP IN-HOUSE are now also inferred not to be

present. From the criteria matrix, the auditor can trace why: USE STANDARD APIS

forbids DEVELOP IN-HOUSE, and is an alternative to MAINTAIN INTERFACE. The

only choice left for the auditor is whether JAAS should be used or not. Since USE

JAAS is an alternative to criteria that we now know should not be present (Fig. 15.11

step 5), the auditor determines that JAAS should indeed be used (Fig. 15.11 step 6).

This concludes the selection of criteria for this audit.

Summarizing, we have seen how the criteria matrix and the inference engine aid

the auditor in determining the impact of his decisions. The criteria matrix provides

an overview of the relations between criteria. After the auditor takes a decision that

a certain measure should be present or absent, the tool eliminates the need to take

decisions that logically follow from that decision, using its inference engine. This

saves the auditor time, and can also prevent taking conflicting decisions.
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Figure 15.11: Six-step changeability analysis

15.6.3 Scenario 3: If-then scenario

What would have happened in the previous scenario if the auditor had selected a

security-related quality criterion instead of considering changeability first? With USE

JAAS and DEVELOP IN-HOUSE at a tie, the auditor could choose DEVELOP IN-HOUSE

without realizing that this would eventually conflict with USE STANDARD APIS.

In Fig. 15.12 (step 1), the auditor takes the (as we now know, wrong) decision to

expect the presence of an in-house developed authentication module in the software

product. Since there are no conflicts yet, the tool accepts the auditor’s decision and

infers that JAAS should not be used in the product (Fig. 15.12 step 2). Then, like in

the scenario described in §15.6.2, the auditor decides that in this product standard APIs

should be used (Fig. 15.12 step 3).
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Figure 15.12: Conflict during security analysis
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When the inference engine processes this last decision of the auditor, it finds a

conflict: the use of standard APIs means that an in-house authentication module cannot

be used; but the auditor explicitly specified that an in-house authentication module

should be used. The tool supports the auditor in detecting and solving such conflicts by

marking inconsistent criteria with a red background in the effect matrix (e.g.,DEVELOP

IN-HOUSE in Fig. 15.12 step 4). The auditor can resolve this conflict manually, by

deselecting that DEVELOP IN-HOUSE ‘should be used’ and setting it to ‘should not be

used’, which creates the opportunity to do the opposite with USE JAAS. Alternatively,

the auditor can undo the last steps up to the point where he selected the criterion that

is now in an inconsistent state, and continue from there. In that case, the auditor has

two remaining options: decide that JAAS should be used or consider another quality

attribute first. In both cases, the end result would eventually be the same as the result

in Fig. 15.11 (step 4).

This scenario shows how the auditor can perform if-then scenarios without the need

to investigate and trace the intricate set of all relations. From discussions with actual

auditors, we know that such scenarios are a valuable decision support mechanism, since

they provide immediate feedback on the consequences of (tentative) decisions and thus

save time by culling paths in the decision space.

15.7 Design Rationale of the Ontology-Driven Vi-

sualization

15.7.1 Visual design

In the design of the user interface, we followed several well-known design principles in

information- and software visualization (Card et al., 1999; Chen, 2004). First and fore-

most, our visual design is simple. Each of our four linked views supports a user task:

the quality attribute hierarchy for browsing all available attributes and selecting those

of interest; the attributes-of-interest view for selecting attributes for a given analysis;

the effect matrix for showing relations between criteria and attributes and criteria prop-

erties; and the criteria matrix for showing relations between criteria (Fig. 15.3). We

use 2D matrix layouts to show relations, rather than graphs or 3D layouts. 2D matrix

layouts are highly scalable and simple to use, as shown by many software visualization

examples (Abello and van Ham, 2004; Diehl, 2007). Third, we use a small set of con-

trasting colors, which is effective in attracting the user’s attention to salient events, e.g.

large positive or negative ranks (effect matrix) or conflicting relations (criteria matrix).

Finally, interaction is simple and directly doable on all views: just a sequence of sorts

and selects. Overall, the tool’s minimal design and classical GUI made it easily usable
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and accepted by its target group, and effectively lets users perform ‘what if’ scenar-

ios in just a few mouse clicks. As such, our tool and its application fits in the newly

emerging Visual Analytics discipline (Keim et al., 2008): instead of being a static data

presentation, our tool guides and supports the user’s decision and reasoning process.

Interaction, linked views, and continuously changing the displayed data based on the

decision path are essential elements to this visual analytics design.

The auditors of DNV who assessed our tool reacted very positively. Especially the

easy selection of quality criteria and the way the tool invites the user to ‘play around’

and consider ‘what if’ scenarios were cited as the tool’s main benefits (Szabó, 2008).

15.7.2 Technical design

The tool’s technical design relies on the use of semantic technologies. The ontology

is implemented using the ‘Web Ontology Language’ (OWL), which is endorsed by the

World Wide Web consortium and supported by various ontology editors and reason-

ing engines. The QuOnt ontology presented in §15.5 can be expressed in OWL quite

straightforwardly.

The constraints from Table 15.1 are expressed using the Semantic Web Rule Lan-

guage (SWRL), an OWL-based rule language. Like OWL, SWRL makes an ‘open

world’ assumption. Briefly, this means that the absence of a statement does not neces-

sarily mean the statement is false. Hence, in the OWL implementation of QuOnt, the

absence of the statement that a criterion ‘should be used’ in an audit does not automat-

ically imply that the criterion ‘should not be used’; it only means that it is not known

yet whether the criterion should be used. This mimics the way in which auditors reason

about quality criteria.

Another implication of the open world assumption is that OWL and SWRL only

support monotonic reasoning; only new facts can be introduced and existing facts can-

not be changed. Consequently, SWRL does not support negation (¬) nor disjunction

(∨). Since many of the constraints in Table 15.1 use negation and/or disjunction, this

poses some problems when modeling QuOnt constraints as SWRL rules.

Fortunately, many of the problems of constraint implementation can be solved.

The lack of negation can be largely overcome by introducing a ‘notUsedIn’ relation

for quality criteria that should not be used in an audit. With this new relation, some

constraints can be rewritten to eliminate the open world assumption where appropriate.

For instance, in SWRL the relation constrainsx,y can be implemented as two rules:

notUsedInx ⇒ notUsedIny and usedIny ⇒ usedInx.

Still, two constraints cannot be implemented in SWRL: the ‘enables’ relation that

implies the negation of the ‘constrains’ relation, which violates monotonic reasoning;

and the ‘overrides’ relation that is a disjunction of the ‘forbids’ relation. Although this

261



CHAPTER 15. QUALITY CRITERIA: STRUCTURE AND REUSE

is unfortunate, we found that the ‘enables’ relation (which is simply defined as ‘a weak

form of constrains’ (Kruchten, 2004)) has limited practical value. Also, given the open

world assumption, the tool still allows to define criteria that at the same time ‘should

be’ and ‘should not be’ used in an audit, which is in essence the goal of the ‘overrides’

relation in a closed world assumption.

15.8 Conclusion

In this chapter we have presented QuOnt, an ontology that supports the reuse of qual-

ity criteria in software product audits. We derived this ontology from the perspective

that quality criteria can be viewed as decisions upon a Soll-architecture of a software

product. We have demonstrated analogies between a theory of architectural design

decisions and quality criteria. Based on those analogies, we have proposed our ontol-

ogy, the value of which we demonstrated by walking through three scenarios of quality

criteria selection using a QuOnt-based audit project memory.

For the visualization of quality criteria, we have introduced ontology-driven visual-

ization (ODV), a type of visualization that combines the strengths of tabular and struc-

tural visualization of architectural design decisions and overcomes their drawbacks.

We showed how ODV can be employed in a decision support system that assists in

the reuse of quality criteria, a particular type of design decision in the early stage of

a software product audit. This decision support consists of three main elements: 1.

support for trade-off analysis, 2. support for impact analysis, and 3. support for if-then

scenarios.

We have presented our work from the perspective of product audits and quality

criteria. Given the decision characteristics of quality criteria, however, we have no

reason to believe that our results are limited to this perspective alone. On the contrary,

we conjecture that scenarios similar to the ones described in this chapter can also be

used in a forward engineering setting. In that sense, our work shows the added value

of maintaining explicit and reified relations to quality attributes, for quality criteria and

design decisions alike.

We have taken the existence of ontology instances such as the ones used in the three

scenarios as given. However, one of the largest challenges we see for widespread ac-

ceptance of ODV (and for the use of decision ontologies in general) is to overcome the

need for complete up-front codification, especially codification of relations of which

the potential amount rapidly increases when the number of decisions in the ontology

rises.

A particularly interesting codification approach could be an incremental approach,

in which ODV plays a role from the very beginning. Since ODV uses whatever in-
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formation is codified in the ontology, it can be used even on small and/or incomplete

knowledge bases. Whenever the user finds some information missing, this information

can be added to the ontology and is henceforth available for use and reasoning. In

this way, the codified knowledge can be incrementally extended and refined. More-

over, each refinement provides immediate benefit to the user, which provides a strong

incentive to improve the knowledge base.

We see a role for data mining techniques that examine the ontology for details on

past projects and derive knowledge from this historical data. For example, data mining

techniques may label criteria that are often used together as ‘relatedTo’ each other.

When these mined relations are presented to the auditor (e.g., in ODV’s criteria matrix),

the auditor can refine the type of relation in the ontology to one that the inference engine

can reason with.

While assessment of our visualization by DNV’s auditors was in general positive,

more data is needed on the use of ODV in real-life situations. These situations could

be the reuse of quality criteria in audits, but also reuse of design decisions in a forward

engineering sense.
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16
Constructing a Reading Guide for

Software Product Audits

Architectural knowledge is reflected in various artifacts of a software product. In a

software product audit this architectural knowledge needs to be uncovered and its ef-

fects assessed in order to evaluate the quality of the software product. A particular

problem is to find and comprehend the architectural knowledge that resides in the soft-

ware product documentation. In this chapter, we identify the main characteristics an

architectural knowledge discovery method should exhibit. We discuss how the use of a

technique called Latent Semantic Analysis can guide auditors through the documenta-

tion to the architectural knowledge they need. We validate the use of Latent Semantic

Analysis for discovering architectural knowledge by comparing the resulting vector-

space model with the mental model of documentation that auditors possess.

16.1 Introduction

For a given software product there is no single source that contains or provides all

relevant architectural knowledge. Instead, architectural knowledge is reflected in var-

ious artifacts such as source code, data models, and documentation. In the case of

a software product audit, auditors will typically first use the architectural knowledge

contained in the documents to familiarize themselves with the system. Subsequently,

the documentation is used as a source of evidence for findings about the software prod-

uct quality. However, for large sets of documents it can be very hard to locate the

knowledge needed for a specific purpose.

A complicating factor in distilling relevant architectural knowledge from software

product documentation is the fact that there are often many different documents. Each
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of these documents is tailored to specific stakeholders and different documents can

therefore reflect architectural knowledge at different levels of abstraction. For instance,

a project manager might be particularly interested in the overall picture contained in a

high-level document, whereas a development team needs to learn the effect of architec-

tural decisions on the implementation from the technical specification. This means that

each document has a different focus, and between the documents the levels of abstrac-

tion used may vary wildly. Furthermore, various explicit and implicit relations exist

between the topics and concepts described in the documents, as well as between the

documents themselves.

We have conducted a study at an organization that has broad experience in perform-

ing independent software product audits. Customers who request such audits range

from large private companies to governmental institutions.

In our study we have investigated the use of architectural knowledge in software

product audits. We were particularly interested in how the auditors gain the archi-

tectural knowledge needed to answer the audit question. To answer this question we

observed an audit that was being conducted for one of the company’s customers. We

attended and observed the audit team meetings and had discussions with the audit team

members on their use of architectural knowledge in the audit. In addition, we held

more general interviews on this topic with five employees who had been involved in

various audits, two of whom were also directly involved in the observed audit. The

interviewed employees possess different levels of experience and have different focal

points when conducting an audit.

Auditors have to deal with large quantities of documents that contain architectural

knowledge. The auditors indicate they are in need of a reading guide that helps them

discover the relevant architectural knowledge in the documentation. However, such a

reading guide is often hard to obtain. We therefore need a mechanism to support (semi-

)automated discovery of the important architectural knowledge in a set of documents.

In this chapter we outline the problem of discovering architectural knowledge in

software product documentation and present a technique that can be used to alleviate

this problem. This technique, Latent Semantic Analysis, uses a mathematical tech-

nique called Singular Value Decomposition to discover the semantic structure underly-

ing a set of documents. We employ this latent semantic structure to guide the auditors

through the documentation to the architectural knowledge needed. A comparison of

the discovered semantic structure with the ideas auditors have of software product doc-

umentation shows that Latent Semantic Analysis produces a good approximation of the

auditors’ mental models.

The remainder of this chapter is organized as follows. The next section discusses

the use of architectural knowledge in software product audits based on our observa-

tions in the study we conducted. §16.4 presents Latent Semantic Analysis (LSA) and
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its mathematical background, and presents a proof of concept of the use of LSA to

discover architectural knowledge from written text. §16.5 discusses the application of

LSA to a set of documents that contain software product documentation and shows

how we can employ the semantic structure uncovered by LSA to guide the auditor

to relevant architectural knowledge. In §16.6 we validate the LSA results through a

comparison with auditors’ mental models of software product documentation. §16.7

outlines research areas that are still open for further study, and §16.8 contains conclud-

ing remarks on this chapter.

16.2 Architectural Knowledge Use in Software

Product Audits

In a software product audit, two types of architectural knowledge can be distinguished.

On the one hand there is architectural knowledge pertaining to the current state of

the software product; this knowledge reflects the architectural decisions made. On

the other hand there is architectural knowledge pertaining to the desired state of the

software product; this knowledge reflects the architectural decisions demanded (or ex-

pected). It is the auditor’s job to compare the current state with the desired state.

In order to perform a comparison of current state and desired state, the auditor has

to have a firm grasp on both types of architectural knowledge. A common method to

structure the architectural knowledge of the desired state is to define a number of qual-

ity criteria (cf. Chapter 15). These criteria can be phrased as (architectural) decisions,

and are a combination of the wishes of the customer and the expertise of the auditor.

An example of such a criterion might be ‘All errors in the software are written to a

log. Each log entry contains enough information to determine the cause of the error.’.

A software product audit consists of a comparison of these quality criteria against the

current state of the software product.

The ‘current state’ architectural knowledge of the software product is reflected in

different artifacts, in particular in source code and the accompanying documentation.

Some architectural knowledge, for instance alternative solutions that were considered

but have been rejected, might not be explicitly captured in these artifacts at all. This

architectural knowledge is left implicit and lives only in the heads of its originators.

Particular methods that are used to distill the architectural knowledge needed from

these three sources - source code, documentation, and people - are scenario analysis,

interviews, source code analysis, and document inspection.

Both interviews and scenario analysis are techniques to elicit (implicit) architec-

tural knowledge from people’s minds, and consequently require extensive interaction
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with the software product supplier. Source code analysis and document inspection,

however, are performed using only the artifacts that have been delivered as part of the

software product. In terms of availability of resources, the latter two are hence to be

preferred. In the remainder of this chapter we will focus on document inspection in par-

ticular. A typical first use of the architectural knowledge reflected in the documentation

is for auditors to familiarize themselves with a software product. Once a certain level

of comprehension has been attained, the documents are used as a source of evidence

for findings regarding the software product quality.

While document inspection is an important method in a software product audit, it

can also be a difficult method to use. The difficulty of performing document inspec-

tion lies in the sheer amount of documentation that accompanies most software prod-

ucts. Auditors are swamped with documentation, and there is no single document that

contains all architectural knowledge needed. Moreover, it is often not obvious which

information can be found where. Auditors need to fall back on interviews, a resource-

intensive technique, to gain an initial impression of the organization of architectural

knowledge in the documentation.

The auditors indicate that, to locate and gain insight into architectural knowledge in

documents, they need a ‘reading guide’. Such a reading guide tells the auditors where

to start reading, and which documents to consult when in need for an answer about

a particular topic. Unfortunately, the auditors practically never encounter a reading

guide among the documentation of a software product. This means that they have to

fall back on interviews with for instance architects to introduce the architecture and

documentation. These interviews are not always possible, for example due to time

constraints.

From the above it should be clear that the auditors who perform a software product

audit would greatly benefit from tools and techniques that can direct them to relevant

architectural knowledge and therewith can provide a ‘reading guide’ for the software

product documentation. We refer to the goal of such tools and techniques as ‘Architec-

tural Knowledge Discovery’.

16.3 Architectural Knowledge Discovery Require-

ments

Based on the observations above, this section describes what characteristics an ar-

chitectural knowledge discovery method should exhibit. The requirements of such a

method are aptly summarized by one of the auditors in the following quote:

“Tell me where I should start reading, which documents I can consult for
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more detail about, let’s say, functionality or about the architecture, or [for

traces] from architecture to design. Provide me with a route through the

documentation to bring me up to a certain level of knowledge.”

This was the answer of an auditor when asked what the ideal reading guide should

provide. An architectural knowledge discovery method that solves the problems the

auditors encounter should bear such characteristics that the requirements posed in this

quote are met. In other words, it should 1) tell where to start reading, 2) tell which

documents to consult for more detail on a topic, and 3) provide a route through the

documentation.

Since software product documentation consists for the largest part of natural lan-

guage text, a technique that aims to discover knowledge contained in the documenta-

tion should be able to ‘understand’ natural language. A product document set typically

contains information on many different topics, including high-level system architec-

ture, functional design, logical design, and infrastructure architecture. These topics

are not confined to a single document, but have relations with other topics in other

documents as well. To gain a global understanding of the software product, these rela-

tionships need to be grasped by the auditor. In other words, the semantic structure of

the information in the documents needs to be identified.

Discovering the semantic structure of the document set forms the core of architec-

tural knowledge discovery. Grasping this structure transforms a set of individual texts

into a collection that contains architectural knowledge elements and the intrinsic rela-

tions between them. This transformation is the foundation for further analysis outlined

below.

16.3.1 Where to start reading

The semantic structure of a document set can be seen as a measure for similarity;

documents that contain semantically related concepts are more similar to each other

than documents that describe unrelated concepts. An architectural knowledge discov-

ery method should exploit this intra-document similarity to group related documents

together.

Documents grouped together in a cluster have certain semantic correspondence.

For the auditor, this can be interpreted as an overview of which documents ‘belong

together’. If the topics that define the clusters are presented to the auditors, they can

select documents that center around high-level concepts and read those before docu-

ments that describe concepts of a lower level of abstraction. This aids the auditor in

deciding with which documents to start reading.
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16.3.2 Which documents to consult

The question which documents to consult for more detail on a topic is an information

retrieval question. Successful knowledge discovery should improve the success rate of

information retrieval, not only by providing the auditor with insight that can be used

to formulate better queries, but also by allowing the discovered semantic structure to

be used in the retrieval. By taking the semantic structure into account, documents that

contain text semantically similar to the query posed could be retrieved in addition to

documents that contain the query terms themselves. In this sense, architectural knowl-

edge discovery is complementary to information retrieval.

16.3.3 A route through the documentation

Architectural knowledge discovery should also employ the semantic structure to iden-

tify relationships between the different concepts themselves. Together, concepts and

relationships provide a ‘map’ of the architectural knowledge contained in the docu-

ment set. This map crosses the boundaries of individual documents, linking related

topics that are not described in a single document. For example, one document may

describe how certain decisions affect some of the product’s quality attributes, while

another document contains information on the effects of these decisions on the archi-

tectural structure of the system.

An architectural knowledge map can be used by the auditor to gain a further under-

standing of the architectural knowledge in the documents. The map should combine

product specific concepts - such as subsystems, use cases, functional requirements,

and the like - with more generic concepts, including quality attributes, architectural

patterns, etc. Such a combination simplifies understanding the product, since unknown

product specific terminology is linked to an idiom well-known to the auditor. A pre-

requisite for the success of such a combination is that the generic concepts, such as

‘service oriented architecture’ or ‘reusability’, are also contained in the documentation

and are linked there to product specific concepts, such as ‘subsystem X’, for instance

with the sentence ‘To improve reusability, subsystem X implements a service oriented

architecture’. The architectural knowledge map provides a route through the software

product documentation by conveying which concepts from the documentation are re-

lated.
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16.4 Latent Semantic Analysis

16.4.1 An overview of LSA

Latent Semantic Analysis (LSA) is a technique that infers the meaning of words and

passages from natural text. The origin of LSA lies in information retrieval. LSA was

presented by Deerwester et al. (1990) as ‘a new method for automatic indexing and re-

trieval’ of documents. Later research also focused on the psycholinguistic significance

of LSA. Landauer and Dumais (1997), for instance, use LSA to simulate the acquisi-

tion of vocabulary from text, and present LSA as a theory of acquisition, induction, and

representation of knowledge.

LSA starts with building up a matrix of term-document frequencies that represents a

vector-space model. Vector-space models are based on the assumption that the meaning

of a document can be derived from the terms that are used in that document. In a vector-

space model, a document d is represented as a vector of terms d = (t1, t2, ..., tn), with

ti (i = 1, 2, ..., n) being the number of occurrences of term i in document d (Letsche

and Berry, 1997). A ‘document’ can be defined as a single document, or an arbitrary

smaller unit such as a section or paragraph. The matrix elements consist of a weighted

frequency count, indicating the number of times a word (the ‘term’) occurs in a docu-

ment. This results in a high-dimensional sparse matrix.

With LSA, the dimensionality of the represented vector space is reduced by ap-

plication of singular value decomposition. The resulting matrix is an n-dimensional

reconstruction of the original matrix, with n being the reduced number of dimensions.

The n-dimensional reconstruction is an approximation of the original matrix. Because

of the dimensionality reduction, the new term-document frequency estimations rep-

resented by the cells in the matrix differ (sometimes significantly) from the original

values. The interesting characteristic of this new matrix is that it no longer only links

terms to documents in which they are present, but also to documents that are somehow

related to that term. It has been argued that in this way LSA has the ability to model

human conceptual knowledge (Landauer et al., 1998).

The (latent) semantic structure that is discovered with LSA can be further analyzed.

Document clustering can for instance be performed by calculating the vector similarity

between document vectors in the reduced LSA vector space; documents that describe

similar concepts will have similar document vectors. These vectors correspond to the

columns in the reconstructed matrix. Analogous to document similarities, term simi-

larities can be calculated using the matrix rows as term vectors.

Vector similarity can also be used for information retrieval purposes. The query is

then translated to a vector and compared to the document vectors in the vector space.
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Because the document vectors result from LSA, a query can also retrieve documents

that are related to the query, but do not contain the query terms itself. This evades the

problem of synonyms in the document set, where searching for ‘reliability’ would not

retrieve documents that contain information on ‘fault tolerance’.

Over the years, LSA has seen various application domains, including software en-

gineering. For instance, Maletic et al. applied LSA to source code of software compo-

nents in order to support program comprehension (Maletic and Marcus, 2000; Maletic

and Valluri, 1999). Another approach is taken by Hayes et al. (2005), who use LSA to

support the construction of requirements traceability matrices.

Using LSA for architectural knowledge discovery adds a new item to the list of

LSA applications in software engineering. Although architectural knowledge discov-

ery also contributes to better program understanding, our approach differs from the use

of LSA by Maletic et al., who apply LSA to source code artifacts. Furthermore, as we

shall see the effect of an LSA-based reading guide is not limited to better product com-

prehension, but further supports auditors in locating evidence for their findings. Since

architectural knowledge can be reflected differently in source code and documentation,

some of the evidence and knowledge that can be found in the documentation might not

be available from the software product’s source code.

16.4.2 Proof of concept

Fig. 16.1 depicts a matrix based on the vector-space model constructed for three texts

that were taken from the documentation of a software product. This software product,

based on a service oriented architecture, was subject to an audit we observed.

The three texts used are representative selections from a use case definition (UC),

a service specification (SVC), and an architecture description (ARCH). From the use

case definition we took the introduction of the use case; from the service specification

we took the description of the part of the service that relates to the selected use case; and

from the architecture description we took the section that describes the conformance to

SOA. Together, the three document vectors corresponding to these three texts contain

approximately 90 distinct terms, excluding stopwords. This so-called term-document

frequency matrix represents the number of occurrences of each of these terms in each

of the three documents. The original document vectors are hence extended with terms

that did not occur in the document itself, but do occur in one of the other texts. In these

extended document vectors ti is set to 0 if term i does not occur in the document. The

cutout shows the exact number of occurrences of six terms in the respective texts. For

reasons of non-disclosure, the terms ‘domain entity’, ‘use case’, and ‘business object’

have been substituted for the product-specific terminology.

Although the vector-space model in Fig. 16.1 captures some of the semantics of
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UC SVC ARCH

. . . . . . . . . . . .

. . . . . . . . . . . .

domain entity 0 2 0

service 0 3 1

SOA 0 0 3

system 0 0 4

use case 1 0 0

business object 8 3 0

. . . . . . . . . . . .

Figure 16.1: Term-document frequency matrix based on the vector-space model for

three software product documentation excerpts

the three texts, parts of the underlying semantic relationships are not represented very

well. Based on Fig. 16.1 we can, for instance, only conclude that in theory neither

the use case definition nor the service specification has anything to do with the term

‘SOA’ (an abbreviation for ‘Service Oriented Architecture’). In practice, however, we

would expect at least some relevance of the term ‘SOA’ in the context of a service

specification. Latent Semantic Analysis allows us to find and exploit such underlying,

or latent, semantic relationships.

As discussed in §16.4.1, LSA relies on a mathematical technique called Singular

Value Decomposition (SVD). SVD decomposes a rectangular m-by-n matrix A into

the product of three other matrices: A = UΣV T . The matrix Σ is a r-by-r diagonal

matrix, in which the diagonal entries (�1, �2, ..., �r) are singular values and r is the

rank of A. As explained in (Deerwester et al., 1990), SVD is closely related to standard

eigenvalue-eigenvector decomposition of a square symmetric matrix. In fact, U is the

matrix of eigenvectors of the square symmetric matrix AAT , while V is the matrix of

eigenvectors of ATA. Σ2 is the matrix of eigenvalues for both AAT and ATA. The

interested reader can find more technical details on SVD in advanced linear algebra

literature such as (Golub and Loan, 1996).

Since SVD can be applied to any rectangular matrix, it can also be used to decom-

pose a term-document frequency matrix such as the one depicted in Fig. 16.1. After

such a decomposition, depicted in Fig. 16.2, the matrices U and V contain vectors that

specify the locations of the terms and documents in a term-document space, respec-

tively. The r orthogonal dimensions in this space can be interpreted as representations

of r abstract concepts (cf. (Landauer et al., 1998)). The left-singular and right-singular

vectors ui and vj indicate how much of each of these abstract concepts is present in
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Figure 16.2: Singular value decomposition of a term-document frequency matrix

term i and document j.

As outlined above, the original matrix A can be reconstructed by calculating the

product of UΣV T . Instead of a reconstruction, a rank-k approximation of A can be

calculated by setting all but the highest k singular values in Σ to 0. This approximation,

Ak, is the closest rank-k approximation to A (Berry et al., 1995). Calculating Ak for

a term-document space, such as the one depicted in Fig. 16.1, results in the closest

k-dimensional approximation to the original term-document space (Letsche and Berry,

1997). In other words, by using SVD it is possible to reduce the number of dimensions

in a term-document space. It is exactly this capability of SVD, depicted in Fig. 16.3,

that is employed by LSA.

By using only k dimensions to reconstruct a term-document space, LSA no longer

recalculates the exact number of occurrences of terms in documents. Instead, LSA

estimates the number of occurrences based on the dimensions that have been retained.

The result is that terms that originally did not appear in a document might now be

estimated to appear, and that other words that did appear in a document might now

have a lower estimated frequency (Landauer et al., 1998). This is the way in which

LSA infers the latent semantic structure underlying the term-document space, and the

way in which the deficiencies in the semantics captured in a vector-space model are

overcome.
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Figure 16.3: Calculation of the closest rank-k approximation to the original term-

document space

In the reduced dimensional reconstruction of the term-document space, the mean-

ing of individual words is inferred from the context in which they occur. This means

that LSA largely avoids problems of synonymy, for instance introduced because two

different authors of documentation for the same software product use two different

terms to denote the same concept. One of the authors might for instance use the full

product name in the documentation, while the other author prefers to use an acronym.

Since the contexts in which these different terms are used will often be similar, LSA

will expect the product acronym to occur with relatively high frequency in texts where

the full product name is used and vice versa. However, it should probably be stressed

here that we cannot expect LSA to improve the documentation other than making it

more accessible. LSA will happily accept wrong, superfluous, or obsolesced documen-

tation and guide anyone interested to ‘relevant’ parts of that documentation. Nonethe-

less, for reasonably well-written documentation the latent semantic structure LSA in-

fers can be very well exploited to guide the reader.

Fig. 16.4 shows the result of the application of LSA to the term-document fre-

quency matrix from Fig. 16.1. The cutout shows the same six terms that are shown

in the cutout in Fig. 16.1, but this time the numbers correspond to the estimated term

frequencies based on retaining only 2 dimensions. Upon inspection of this result, in-
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UC SVC ARCH

. . . . . . . . . . . .

. . . . . . . . . . . .

domain entity 0.905 0.827 0.39

service 1.207 1.436 1.52

SOA -0.451 0.585 2.806

system -0.601 0.779 3.741

use case 0.651 0.452 -0.15

business object 6.566 4.859 -0.618

. . . . . . . . . . . .

Figure 16.4: Estimated term-document frequencies after the application of LSA to the

matrix in Fig. 16.1

teresting patterns appear. For starters, the term SOA is now expected to be present

in the service specification as well, albeit at a lower frequency than in the architec-

ture description. This corresponds to our intuitive notion that we would expect at least

some relevance of SOA to a service specification. The negative expected frequency of

SOA in the use case specification is somewhat awkward to interpret mathematically,

but might perhaps best be regarded as a kind of ‘surprise factor’. In a sense, LSA tells

us not only that it does not expect the term SOA to crop up in the use case specification

(estimated number of occurrences = 0), but that indeed it would be quite surprised to

encounter this term there.

In general, a pattern seems to emerge in Fig. 16.4. If we regard the use case specifi-

cation as the lowest level of abstraction text, the architecture description as the highest

level, and the service definition somewhere in between, we see that low-level concepts

(such as ‘business object’ and ‘use case’) have a diminishing level of association as the

level of abstraction of the text increases and vice versa. LSA also seems to indicate that

the term ‘service’ is a central concept in the documentation: its estimated frequency is

almost equal for all three documents. Those patterns stem from the semantic structure

in the documents. We can employ this uncovered semantic structure to guide an auditor

to the information needed.

16.5 Constructing a Reading Guide: A Case Study

The LSA technique introduced in §16.4 forms the basis of a detailed case study in

which we examine how the semantic structure discovered by LSA can be employed to
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Auditor

Reduced-dimensional 
term/document space

Software product documentation

Latent 

Semantic Analysis

read documents

new information

term 

to explore

suggested

documents

Figure 16.5: Schematic overview of the construction of a reading guide using the

reduced-dimensional term-document space calculated by LSA

guide the auditors through the documentation. This section presents the results of this

case study.

Fig. 16.5 depicts the interactive process by which an auditor is guided through the

documentation. Initially, auditors start with a set of unread documents. Although the

content of these documents is still unknown, the auditors have a goal that needs to

be satisfied by reading (part of) the documentation. Examples of such goals are ob-

taining a global understanding of the software product, investigating certain quality

attributes, or locating (further) evidence for certain findings. The reduced-dimensional

term-document space, which results from LSA, can be inspected to locate documents

that are highly associated with a term that corresponds to the auditor’s goal. For in-

stance - and this example will be worked out in more detail below - the term ‘archi-

tecture’ could be used to find documents that provide high-level information about

the software product. From reading the suggested documents, an auditor learns new

information including new - potentially product-specific - terms that can be used to lo-

cate documents that provide more detail on the new terms. In short, reading guidance

consists of an iterative process of selecting and reading documentation, in which the

auditor can use the architectural knowledge gained from reading suggested documents

to steer the selection of new documents.

We applied LSA to a total of 80 documents that were subject to the audit that has

been described earlier. The term-document frequency matrix that was constructed for

these documents contained a total of 3290 terms found in the 80 documents. These

3290 terms did not contain very common words (‘stopwords’) such as ‘a’, ‘the’, or

‘is’. It is common practice to disregard these stopwords, since they tend to be evenly

spread over all documents and hence do not bear any distinctive meaning. The length
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of the document vectors that make up the term-document frequency matrix had been

normalized using cosine normalization (Salton and Buckley, 1988) before LSA was

applied. This normalization reduces the effect of document size (i.e., the number of

terms in the document); without normalization, longer documents tend to be favored

over shorter documents when a document selection is made.

Using the technique described in §16.4, we calculated a 5-dimensional approxima-

tion of the constructed term-document frequency matrix. The selection of the number

of dimensions to retain is an empirical issue (Landauer et al., 1998), although some

heuristics exist (Berry et al., 1999). The rank-5 approximation chosen here requires a

49% change relative to the original term-document frequency matrix. Although this

might appear as a rather large change, the results obtained with this approximation suit

our needs; they can be effectively used to construct a reading guide.

The case study presented here reconstructs the early phase of the software prod-

uct audit, in which the auditors need to attain a global understanding of the software

product in order to further assess its quality. As in the previous section, for reasons of

non-disclosure the results presented here have been anonymized.

In general, when auditors commence a software product audit they want to gain

an initial, high-level understanding of the software product. This global understanding

is necessary to successfully perform the audit, since it is a prerequisite for subsequent

audit activities. For instance, in scenario analyses the supplier of the software product

is asked how the product reacts to certain change scenarios or failure scenarios. In

order to judge the answer the supplier provides, an auditor needs to have a thorough

understanding of the software product. Otherwise, the supplier might provide an an-

swer that is incomplete or inconsistent with the real state of the product, without this

being noticed.

Auditors who want to attain overall comprehension of the software product can be

guided through the documentation using the semantic structure discovered by LSA. A

route that is preferred by all auditors we interviewed is to start with high-level, global

information and gradually descend to texts that contain more detailed and fine-grained

information. A single term that can be expected to cover the high-level information

about the software product well is the term ‘architecture’.

We can inspect the reduced 5-dimensional approximation of the original term-

document frequency matrix that LSA has calculated to find the documents that best

match the term ‘architecture’. In order to do so, it suffices to rank the documents by

their respective values in the row that coincides with the term ‘architecture’ (the ‘ar-

chitecture’ term vector). Documents that have a high value in the ‘architecture’ term

vector correspond to the documents in which LSA expects the highest number of oc-

currences of the term ‘architecture’. Recall that the highest-ranking documents do not

necessarily include the literal term ‘architecture’, but LSA inferred that it would be
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likely to encounter the term ‘architecture’ in these documents; they are semantically

close to the meaning of ‘architecture’. In other words, these documents talk about

architecture, perhaps without mentioning the word ‘architecture’ itself.

Table 16.1: Top-10 documents that match the term ‘architecture’, with the number of

occurrences of ‘architecture’ in the document
Rank Document ID # ‘architecture’

1 79 44

2 39 1

3 44 3

4 41 2

5 78 10

6 46 0

7 45 1

8 42 1

9 40 2

10 49 0

The list in Table 16.1 shows the 10 highest ranked documents for the term ‘ar-

chitecture’, together with the actual number of occurrences of ‘architecture’ in these

documents. Given this list, an auditor can simply start reading top-down, in this case

starting with document 79. However, some of these documents are fairly large while

others are rather small. In fact, documents 46 and 45 both consist of only 2 pages. If an

understanding of the software product can be attained by either reading a (very) small

document or by ploughing through a large number of pages, the former is obviously

preferred by the auditors. Table 16.2 lists the same top-10 documents for ‘architecture’

also shown in Table 16.1. In this table, however, the documents have been categorized

according to their size. The size categories have been defined as: very small (< 5
pages), small (< 10 pages), medium (< 30 pages) and large (≥ 30 pages). The rank

according to Table 16.1 is given in parentheses, to illustrate the differences.

Table 16.2 shows that, given a preference for smaller documents, an auditor looking

for information about the architecture of the software product should first read docu-

ment 46. Note that this document does not contain the term ‘architecture’ at all (see

Table 16.1). Nevertheless, upon inspection this document indeed contains high-level

‘architectural’ information.

From document 46, the auditor learns for instance that the software product con-

sists of three high-level components, which we will call X, Y, and Z. Furthermore,

the document identifies two external systems that interact with the software product as
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Table 16.2: Top-10 documents that match the term ‘architecture’, grouped by size
Rank Doc. ID # pages

Very small
1 (6) 46 2

2 (7) 45 2

Small
3 (5) 78 6

4 (10) 49 9

Medium

5 (1) 79 24

6 (2) 39 13

7 (3) 44 21

Large

8 (4) 41 30

9 (8) 42 48

10 (9) 40 31

well as an organizational unit that will handle certain types of operational problems

that might occur. Finally, the document contains a list of intended uses of the software

product.

Now that the auditor knows a little more about the software product, the next docu-

ment has to be selected. Since the auditor still has not read all ‘architecture’ documents,

there are in principle two options: either remain with the ‘architecture’ documents and

select a document from that list (e.g., document 45) or use the architectural knowledge

obtained to delve into a particular topic.

Good candidates for further exploration of the documentation are the components

X, Y, and Z. Since these components conceptually divide the software product in three

distinct parts, auditors might want to examine each of these parts to further their global

understanding. In its current form, the selection of the right terms for exploration is

a matter of experience. It is from experience that the auditor knows that the term

‘architecture’ is likely to be related to high-level software product documentation. It is

from experience that the auditor suspects that the three components are good candidates

for further exploration.

Given the fact that the auditors want to gradually progress through the documenta-

tion, the degree of deviation of each of the components from the meaning of the term

‘architecture’ is an indication of the route that should be followed through the docu-

ments. In order to assess the deviation, a calculation can be performed of the similarity

between the terms ‘architecture’ and ‘componentX’, ‘componentY’, and ‘componentZ’

respectively. This enables us to identify how much the texts for which LSA infers a

high association with each of the components deviate from the text in document 46,

which closely resembled the meaning of the term ‘architecture’.

280



16.5. CONSTRUCTING A READING GUIDE: A CASE STUDY

A common measure of similarity between terms (or ‘term-term similarity’) is the

cosine of the angle between the two term vectors (Berry et al., 1999). Let ti and tj be

the term vectors for terms ‘i’ and ‘j’ respectively, i.e., the rows from Ak that correspond

to the terms ‘i’ and ‘j’. Then the cosine of the angle � between these term vectors is

cos � =
ti⋅tj

∣∣ti∣∣∣∣tj ∣∣
.

Table 16.3 shows the similarity of each of the terms ‘componentX’, ‘componentY’,

and ‘componentZ’ with the term ‘architecture’, calculated as the cosine between their

respective term vectors. It becomes clear from these three values that ‘componentX’

is semantically closest to ‘architecture’ followed by ‘componentZ’, and that ‘compo-

nentY’ is the least similar to ‘architecture’.

An interesting observation is that the relations between the three components are

not readily apparent from the text in the document itself, nor from the names given to

the components. Although the document does contain a picture that seems to suggest

a layered ordering of the components, the text in document 46 does not mention or

reflect such a layered approach at all. Here, by using LSA we have truly discovered

architectural knowledge that the auditor could not have distilled from reading document

46 alone. This discovered knowledge can be used to further explore the documentation.

Based on the similarity of ‘architecture’ and each of the three components, a logical

next step to read the documentation seems to first read the top-ranking documents for

‘componentX’, then for ‘componentZ’, and finally for ‘componentY’. By following

this route, the semantic distance between the document just read and the newly selected

documents increases gradually.

Table 16.3: Cosine term-term similarity of ‘architecture’ and the high-level compo-

nents
componentX componentY componentZ

0.9814 0.4096 0.7900

Analogous to the selection of the top-10 documents for the term ‘architecture’, we

selected the top-10 documents for each of the terms ‘componentX’, ‘componentY’, and

‘componentZ’. For each of the components, we analyzed the top-10 documents found.

The results of this analysis show an interesting pattern in the selection of documents.

Due to its close semantic resemblance of ‘architecture’, shown in Table 16.3, the

top-10 documents that were found for the term ‘componentX’ are in fact the same 10

documents that were found for ‘architecture’. The only difference is a small change in

the ranking of the documents. The top-10 documents found for the term ‘componentZ’

(the next closest term to ‘architecture’) comprises a mix of service specifications and

architectural design descriptions, with a clear focus on service specifications (the first
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four documents in the list are service specifications). The top-10 documents found for

‘componentY’ are all use case definitions.

The route through the documentation found by analyzing the result of LSA sug-

gests that, using ‘architecture’ as a starting point, the auditors should first read the

architecture descriptions and similar high-level documentation, then proceed with ser-

vice specifications, and finally read the use case definitions. Although LSA does not

in and of itself know of the distinction between high-level documents (i.e., architec-

ture descriptions) and low-level documents (i.e., use case definitions), the documents

that it suggests to read are grouped along this axis. Moreover, from interviews with

the auditors we learned that this is indeed a route they prefer to follow to familiarize

themselves with a software product.

16.6 Validation of the Use of LSA

The previous section shows how the application of LSA delivers results that support

auditors in finding a route through the documentation. The auditors indicate that the

results show correspondence to their preferences for selecting and reading documents.

In this section we empirically validate this correspondence.

The knowledge discovered by using LSA can only be regarded valid if it fits the

expectations of the auditor. In other words, the discovered semantic structure must

conform to the auditor’s mental model of software product documentation and the ar-

chitectural knowledge contained within. This means that the validity of the result is in

principle highly subjective.

Although an auditor’s mental model is subjective, the auditors who were inter-

viewed in the light of our case study on architectural knowledge use appear to have

commonalities in their mental model of software product documentation. Perhaps the

most obvious commonality is the categorization of documentation according to its level

of abstraction. However, when confronted with the question how they find the architec-

tural knowledge needed without having a reading guide available, most auditors reply

that it is largely a matter of experience. This means that, even if we can employ the

commonalities in the auditors’ perception of software product audits, we still need to

validate our results against tacit knowledge.

A method that can be used to elicit tacit knowledge is the repertory grid technique.

This technique stems from personal construct theory, and was devised by Kelly (1955).

The repertory grid technique can be used for exploring so-called ‘personal construct

systems’; the collection of implicit personal theories. The repertory grid technique is

“an attempt to stand in others’ shoes, to see their world as they see it, to understand

their situation, their concerns” (Fransella and Bannister, 1977).
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The repertory grid technique investigates bipolar constructs that form someones

mental model of (part of) the world. Examples of such constructs are past-future,

good-bad, and everything-nothing. A particular method to elicit these constructs is by

presenting a person with triads of elements from the domain under investigation. In

our case, we could regard the individual documents as elements. When three of these

elements are presented, the person is asked in which way two of them are alike and how

the third one is different. This identifies a bipolar construct or axis that is apparently

part of the person’s mental model.

Based on elicited constructs, a so-called rank order grid can be constructed. To

do so, the person is asked to rank all elements according to how well they fit the con-

struct poles (e.g., from ‘past’ to ‘future’). This rank order grid can then be further

analyzed, for instance to determine the distances between different elements or con-

structs (Jankowicz and Thomas, 1982). In our case, we derive the distance matrix for

the distances between documents as perceived by an auditor.

Ideally, we would apply the repertory grid technique to the same documents that

were used in the case study described in §16.5. Unfortunately, using 80 elements in a

repertory grid experiment is infeasible. Because of the exponential growth of possible

combinations (triads) of elements, the upper limit for the application of the repertory

grid technique is somewhere around 20 elements. For a validation of the LSA results,

we therefore selected a second audit project in which a much smaller number of docu-

ments were involved.

We understand that it is dangerous to attribute the validity of one project to the

validation of another, especially so if the projects differ in size. Nevertheless, since

auditors already acknowledge that the LSA results are sensible we argue that valida-

tion within a small project at the very least significantly adds to the credibility of our

application of LSA in larger projects. This is even more so because LSA results are

generally thought to improve for larger corpora (Landauer et al., 1998).

For the audit project in which we applied the repertory grid technique, the number

of documents that had to be assessed was limited to 10. The audit team consisted of

three members: one project manager and two auditors. The repertory grid technique

was used in two experiments, one for each auditor. Each experiment lasted for ap-

proximately two hours, until the auditors felt they could not think of any more sensible

(and distinctive) constructs. At the time we conducted the experiment, the audit project

itself had been finished approximately two months earlier. To prevent distortions of

the experiment results because of the two month gap between audit and experiment –

part of the mental model might have been forgotten in the meantime – the triads pre-

sented to the auditors consisted of the actual (physical) documents, which the auditors

could freely browse and read during the experiment. Two exceptions were documents

AS and DB (see below), which were no longer physically or electronically available.
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Those two documents were represented by a proxy: a single sheet of paper with the

document’s title.

The 10 documents will be referred to by the following abbreviations:

∙ FM contains a functional data model.

∙ FD describes the functional design.

∙ XX is an addendum to FD. This is not immediately clear from the title of the

document, nor from the document’s layout.

∙ PD contains the process design.

∙ TP contains a test plan.

∙ UM is the user manual.

∙ RN is a set of release notes.

∙ IM is the installation manual.

∙ AS is an administration manual for the application server.

∙ DB is an administration manual for the database server.

Tables 16.4 and 16.5 depict the rank order grids for auditors 1 and 2 respectively.

The auditors were asked to rank the documents on a 1 to 5 scale. Hence, the first

row in Table 16.4 should be read as follows: auditor 1 considers the contents of doc-

uments FM, FD, UM, and DB to be invariable over releases, whereas RN varies per

release. PD, TP, and AS are considered to be more invariable than variable (but not

completely invariable), while the opposite is true for IM. XX is exactly in the middle.

The constructs should be interpreted from the auditor’s point of view in the context of

the performed audit. In other words, the construct ‘used by me’/‘not used by me’ in

Table 16.4 means ‘(not) used by auditor 1 in the audit’.

While many things could be said about the constructs that were elicited from both

auditors – for instance regarding the commonalities and differences between the two

grids – we will not perform such an analysis here. Within the grids themselves, clearly

not all constructs (or dimensions) are orthogonal. This, too, does not matter for the

discussion at hand. It suffices to take the two grids simply for what they are: a repre-

sentation of the auditor’s own mental model of the 10 documents used in the audit.

We analyzed the auditors’ rank order grids to calculate the distances between the

documents as perceived by the auditors. The resulting distance matrices can be further
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Table 16.4: Rank order grid auditor 1
1 XX PD FM FD TP UM RN IM AS DB 5

invariable 3 2 1 1 2 1 5 4 2 1 varies per release

used by me 5 1 1 1 2 4 5 5 3 3 not used by me

input for development 1 1 1 1 3 5 5 5 4 4 output of development

prescriptive 1 1 1 1 3 5 5 4 5 5 descriptive

development 1 1 1 1 2 2 3 4 5 5 deployment

functionality 2 2 1 1 2 2 4 5 5 5 no functionality

diagrams expected 3 2 1 1 5 2 5 5 5 5 no diagrams expected

whole application 5 1 1 1 1 1 1 5 5 5 part of application

use 4 2 2 2 3 1 3 5 5 5 deployment

test 1 2 3 2 1 1 1 5 5 5 deployment

data flow 1 1 5 3 1 2 3 3 3 4 data entity

too global 5 5 5 4 1 2 3 5 3 3 too detailed

good size 5 5 4 1 1 1 3 1 3 3 overwhelming

Table 16.5: Rank order grid auditor 2
1 XX PD FD FM TP RN UM IM DB AS 5

abstract 2 1 1 2 4 5 5 5 5 5 concrete

content 1 1 1 1 3 5 5 5 4 4 packing

input for development 1 1 1 1 3 4 5 5 4 4 output of development

descriptive / static 1 1 1 1 3 3 5 5 4 4 use / time dimension

app. functionality 1 1 1 1 3 3 3 4 5 5 system administration

design 1 1 1 1 3 4 3 5 5 5 deployment

conceptual 1 1 1 2 2 4 3 4 5 5 concrete/instance

high level 5 3 1 1 2 5 3 4 4 4 detailed

absolute 1 1 1 1 3 5 2 2 2 2 relative (wrt prev. version)

application 1 1 1 1 5 2 2 2 2 2 organisation

used by me 4 2 1 2 5 2 1 1 3 3 not used by me

analyzed, for instance to determine clusters of documents that contain similar docu-

ments.

Figs. 16.6 and 16.7 depict the document clusters according to auditor 1 and 2

respectively. The clusters have been determined with the single linkage hierarchical

clustering method (Johnson, 1967). The axis denotes the difference between the doc-

uments, calculated as 1 minus the similarity. For instance, for auditor 1 the similarity

between documents FD and FM has been calculated as 0.87, therefore the difference

between the two equals 0.13, as shown in Fig. 16.6.

Although there are some differences between the two cluster configurations, both

auditors seem to agree that there are two large document clusters. One cluster contains

documents FD, FM, PD, and XX. The other documents are grouped in the second

cluster. Note that we left AS and DB out of the figures to allow for a fair comparison

with the effect of LSA. Recall that those two documents were no longer available, due

to which LSA was unable to process them. Had we included them in the cluster figures,

they would have shown as a small sub-cluster of two very similar documents (similarity

according to auditor 1: 0.96; auditor 2: 1.00). For both auditors this sub-cluster is most

similar to document IM (auditor 1: 0.79, auditor 2: 0.84).

To illustrate the effect of LSA on the document vector-space model, we applied

LSA to the 8 documents from the audit that were still available. We determined the
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Figure 16.6: Auditor 1: Hierarchical documentation clusters
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Figure 16.7: Auditor 2: Hierarchical documentation clusters

distance matrices for both the term-document frequency matrix and the LSA result.

The distance measure used to calculate distances between two documents is the cosine

of the angle between the two corresponding document vectors.

Fig. 16.8 depicts the clusters for the original term-document frequency matrix.

Those clusters already show some correspondence to the two clusters which the au-

ditors perceive. However, documents XX and RN are two clear outliers. Moreover, the

distinction between the two clusters (the cut around 0.5 similarity) is not very obvious.

The distinction between the two clusters is much clearer in Fig. 16.9. This figure

shows the clusters after LSA has been applied. The only outlier remaining is the set

of release notes (RN). A possible (but unverified) explanation might be that the release

notes follow a style different from the other documents. The release notes consist

mainly of a list of short, somewhat stenographic messages that describe the changes

from one version to another while the other documents contain more extensive text.
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Figure 16.9: LSA: Hierarchical documentation clusters
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The hierarchical clusters leave the impression that the application of LSA trans-

forms the vector space model (initially represented by the term-document frequency

matrix) to better resemble the auditors’ mental models. A quantitative expression of

this ‘better resemblance’ can be given by calculating the correlation between the vari-

ous distance matrices.

To calculate the correlation between the distance matrices we have performed a

simple Mantel test using the zt software tool (Bonnet and Peer, 2002). In this test, the

null hypothesis is that the distances in one distance matrix are independent from those

in another. The results of this test are shown in Table 16.6.

Table 16.6: Simple Mantel test r and p-values
Auditor 1 Auditor 2

Term-document frequency matrix r = 0.627, p = 0.00184 r = 0.666, p = 0.00017

LSA r = 0.730, p = 0.00179 r = 0.871, p = 0.00057

The results of the simple Mantel test show that there is already a significant corre-

lation between the distances according to the term-document frequency matrix and the

auditors’ mental models. This corresponds with how the two clusters already appear

in Fig. 16.8. However, the correlation between the auditors’ rank order grids and the

result of LSA are clearly higher. As a matter of fact, the lowest correlation with LSA

(r = 0.730 for auditor 1) is comparable to the correlation between the rank order grids

of the auditors themselves. A simple Mantel test shows that the correlation between

the two auditors’ rank order grids is 0.738 (p = 0.00020).

In summary, the correlation coefficients calculated by the simple Mantel test indi-

cate that application of LSA yields a vector space model more similar to an auditor’s

mental model than merely counting the words in the documents. Visually, this shows

as a better correspondence of document clusters with the clusters according to the audi-

tors’ perception. This empirical validation supports our initial finding that the reading

guide constructed by applying LSA intuitively made sense for the auditors.

One thing that should again be stressed here, however, is that the result of the appli-

cation of LSA is very much dependent on the selected number of dimensions to reduce

to. Unfortunately we currently have no better guideline than trial-and-error heuristics.

Since there was only a small number of documents used in this particular case, we

were able to calculate the results for all possible number of reduced dimensions – the

original term-document frequency matrix has a maximum number of orthogonal di-

mensions equal to the number of documents. This allowed us to select the number of

dimensions – 4, for the record – that looked most promising. When larger numbers of

documents are involved, this approach becomes infeasible quite soon.
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16.7 Future Work

The work presented in this chapter gives rise to a number of issues that warrant fur-

ther research. An overall issue that remains to be investigated is the scalability of our

approach. LSA proved to be feasible for a corpus of 80 documents, but in practice

software product documentation might comprise many more documents. Document

sets of several hundreds of documents are not uncommon.

Furthermore, the selection of the right number of reduced dimensions is still diffi-

cult. In this area, a comparison of the auditor’s mental model with the result of LSA –

as shown in §16.6 – could possibly provide guidance to selection of the right number of

reduced dimensions, since the optimal number of dimensions yields the best match of

the LSA result with the auditor’s perception. This of course implies that the auditor’s

mental model is known. Although determining this model is feasible by means of the

repertory grid technique, this is by no means a trivial task to perform. Especially not if

this has to be done for every new project in which LSA is to be used.

Besides these global issues, we have identified three main areas that are to be further

explored in the present context: enhancement of the workflow, the use of background

knowledge, and user interaction. This section describes each of these areas in more

detail.

16.7.1 Workflow enhancement

The ‘workflow’ presented in this chapter, i.e., the selection of terms to explore the

documentation, is still rather ad hoc and depends heavily on the auditor’s experience.

One could wonder whether the same result would have been obtained had the process

been started with another ‘high-level’ term, such as the name of the software product

instead of the generic term ‘architecture’.

As a matter of fact, using the name of the product, or the high-level term ‘system’

instead of ‘architecture’, would have yielded a different result. The documents that

are suggested for these terms resemble the documents that were suggested for ‘com-

ponentZ’, i.e., with an emphasis on service specifications. Document 46 would not

have been suggested for any of these terms. Depending on one’s opinion this may or

may not come as a surprise. Some might argue that ‘system’ indeed carries more of

a notion of implementation than ‘architecture’. It does show, however, the importance

of the selection of the (initial) terms to explore. It also shows that the auditor would

benefit from assistance in this selection instead of having to rely on experience alone.

We would like to capture this kind of experience to enhance the workflow and aid the

auditor in selecting new terms to explore.
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We believe that we can capture relevant experience and enhance the workflow by

introducing a feedback loop. By keeping track of terms that worked well in earlier

projects, the auditor can be presented with suggestions as to which terms to explore

in a new project. This helps the auditor to get the project started (e.g., by suggesting

initial terms such as ‘architecture’), but can also circumvent potential dead-ends in

the exploration by explicitly ignoring terms that are known to have led to dead-ends in

previous audits. Such suggestions could perhaps also be mined from the documentation

itself, using techniques such as frequency profiling to locate uncommon words (with

respect to a standard corpus) that are likely to be part of a domain-specific vocabulary.

Sawyer et al. (2005) report successful application of frequency profiling in extraction

of domain terms from requirements engineering documents.

While a feedback loop could relatively easily handle common generic terms such

as ‘architecture’, additional research is needed in particular to determine how to cope

with product-specific terminology such as ‘componentX’. The reasons that auditors

choose certain (product-specific) terms for further exploration need to be analyzed and

translated to more generic ‘heuristics’ and best practices that are applicable to other

projects as well. An example heuristic might be that, given the auditor’s goal of overall

product comprehension, terms that signify components are better candidates for further

exploration than terms that signify intended uses. This heuristic can change when the

auditor’s goal changes. If the auditor is looking for the satisfaction of certain require-

ments, intended uses might be preferred over components.

16.7.2 Background knowledge incorporation

The ‘queries’ that are used in this chapter to explore the software product documen-

tation are logical from an auditor’s point of view. The auditor starts with a high-level

exploration of the software product’s architecture, gradually zooming in to reveal more

detailed architectural knowledge. Through Latent Semantic Analysis, documents with

diminishing levels of abstraction are identified: from architecture descriptions at the

highest level through service definitions to use case specifications at the lowest level.

However, this analysis sequence still requires extensive human interpretation. As re-

marked earlier, LSA itself has no notion of ‘high-level’ or ‘low-level’ documentation,

nor of any other domain-specific knowledge.

To further enhance the support for auditors reading the software product documen-

tation we intend to investigate the incorporation of relatively static background knowl-

edge in the automated analysis of the documentation. The words ‘relatively static’

signify domain knowledge that does not change for each audit. Apart from often used

classifications such as high-level vs. low-level documentation, examples of such back-

ground knowledge are:
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∙ generic models, such as quality models (e.g., ISO/IEC 9126-1) and process mod-

els (e.g., ISO/IEC 14598-5);

∙ ontologies, for instance of architectural patterns (e.g., the Handbook of Soft-

ware Architecture by Booch (online)) and their known relations with for example

quality attributes, generic software engineering ontologies (e.g., the ontology by

the SEONTOLOGY project team (http://www.seontology.org/)) and application-

generic software architecture ontologies (e.g., (Babu T et al., 2007));

∙ ‘heuristics’, such as an auditor’s general preference for smaller documents (see

also §16.5).

Background knowledge can be incorporated when constructing a reading guide by

using it in the selection of suggested documents to read. Models and ontologies can for

instance be used to broaden the scope when exploring a certain term; they can be used

to formulate rules of the form ‘if auditors are interested in X (e.g., ‘maintainability’)

they are (probably) also interested in Y (e.g., ‘changeability’, see also ISO/IEC 9126-

1)’. Heuristics can for example be applied to change the suggested order in which the

documents should be read, as demonstrated in §16.5.

Note that there is also some overlap of background knowledge incorporation with

the workflow enhancements described in §16.7.1. The heuristics (or best practices)

described in that section can in fact be regarded as background knowledge. The trans-

lation of product-specific terminology to generic terms used in these heuristics could

very well be based on an ontology structure.

Background knowledge can hence be employed at two levels: to suggest terms to

explore, steering the workflow; and to suggest documents to read, steering the analysis.

Both affect the outcome of the process, the reading guide.

Using the correlation coefficient calculated by the simple Mantel test, we can closely

monitor whether adjustment of our method improves the result. We could, for instance,

assess the effect of the incorporation of background knowledge in the analysis of the

documentation. Such an assessment consists of a comparison of the distances perceived

by the auditors with the distances before and after incorporating background knowl-

edge. If the result of the analysis corresponds more to the auditor’s mental model when

background knowledge is taken into account, this means that using this background

knowledge is indeed an improvement. Finally, the effect of using other techniques in-

stead of, or together with, LSA could be easily judged analogous to the assessment

of the incorporation of background knowledge. Techniques that could further improve

architectural knowledge discovery results include techniques that, complementary to

LSA, exploit certain more structured properties of the documentation. If, for example,
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a set of documents is structured according to a particular template – which is not un-

common – knowledge of this template could be used to guide the reader to particular

parts of the documentation.

16.7.3 User interaction and tool support

A final area in which further research is needed is the area of user interaction. The

results presented in this chapter all show direct operations on the reduced-rank approx-

imation of the original term-document frequency matrix. This matrix is probably not

the best form of presentation for the end users, i.e., the auditors.

In order to be useful and used in an auditor’s everyday practice, the techniques

discussed in this chapter should be implemented in an interactive environment that ab-

stracts away from the underlying estimated term frequencies. This environment should

provide intuitive support for the workflow discussed in §16.7.1.

A particular area that requires further research is visualization of the reduced-

dimensional term-document space. A desirable visualization supports both locating

terms to explore and locating documents to read. Ideally, this would be presented to

the auditors as a space through which they could navigate in search of the architec-

tural knowledge they need. In this space, distances between terms and/or documents

have actual meaning (cf. the three terms in Table 16.3). Such a visualization requires a

projection of the reduced-dimensional term-document space to two - or at most three -

dimensions. Through such a visualization, auditors can obtain quick visual clues as to

which documents are closely related and how to proceed reading the document set.

16.8 Conclusion

Document inspection is a method used in software product audits to distill architec-

tural knowledge from the software product documentation. Unfortunately, document

inspection is often hard to perform. Auditors are in need of a reading guide that tells

them where to start reading, how to progress reading, and which documents to consult

for more detail on a particular topic.

We have demonstrated how auditors can be guided through the documentation in

a case study in which we reconstructed the early phase of a software product audit.

In this phase, the auditor has not read any documents yet and needs to attain a certain

level of understanding of the software product.

The issue the auditors from our case study encounter can be extended to a more

general public. All stakeholders that need to familiarize themselves with a software
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product for whatever reason will have to answer the same question: where in the doc-

umentation do I find the architectural knowledge I need? This is especially true when,

unlike for some software product audits, no one is available to introduce the architec-

ture to the stakeholder. The stakeholder then has to rely solely on the documentation

that accompanies the product. A particular situation in which this can be the case is

when a software product has to undergo maintenance. If the original architects are no

longer available, the maintenance team only has the documentation at its disposal. We

argue that a solution to this problem of insight lies in architectural knowledge discov-

ery.

To construct a reading guide, we have employed the semantic structure discovered

by Latent Semantic Analysis. This semantic structure is used as the basis for an in-

teractive process in which auditors indicate terms that they want to explore and are

subsequently given reading suggestions for documents containing information about

these terms. The knowledge obtained from the suggested documents can give rise to

new terms to explore, and the discovered semantic structure can be used to determine

the order in which the terms - and corresponding documents - should be explored.

Using the repertory grid technique, we were able to elicit the mental model of

documentation from two auditors. A comparison of the auditors’ mental models with

the result of the application of LSA shows that LSA’s vector-space model is closer to

the auditors’ idea than a naive term-document frequency matrix.
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17
Why Reading and Understanding

Software Documentation Can Be

Difficult

In Chapter 16 we have addressed the need in software product audits for a ‘reading

guide’ for the product’s documentation. This need might be partially due to the way the

audit process works: auditors are relative outsiders to the development of the software

who are only brought in (often late in the process) to assess the quality of the product.

As a result, the auditors do not have a clear picture of the documentation and need to

figure out first which information can be found where. We may ask ourselves, however,

whether similar difficulties of comprehending documentation can occur within a devel-

opment team too. We elicited and analyzed the mental models of software documenta-

tion from eight members of a single development team. We found indeed different levels

of shared understanding between different people. To our surprise, the shared under-

standing within the team highly resembles the development process followed within the

organization. From Conway’s law we know that an organizations structure is mirrored

in the structure of the software that the organization produces. Our findings suggest

that the organization’s development process may likewise be mirrored in the extent to

which a common frame of reference exists within the development team. Hence, the

development process followed may have implications for the effectiveness with which

development knowledge – including architectural knowledge – can be shared through

software documentation.
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17.1 Introduction

During software development, important knowledge is shared between different mem-

bers of the development team. Such knowledge can be shared for example face-to-face

in more or less formal settings, but most software development projects rely to at least a

certain extent on written documentation as a means of sharing knowledge. As a result,

many software development projects end up with huge stacks of documents, in which

one can easily lose track of the information needed. A question one may have is how

effective this document-driven knowledge sharing is, and what its (in)effectiveness is

based on.

The effectiveness of documentation within a development process is determined by

the way in which the intentions of the authors correspond to the expectations of the

potential readers. In a typical software development process, many different kinds of

documents are produced and consumed at various points in time. The contents of those

documents necessarily exhibit a certain amount of overlap. People may lose track of

the meaning of individual documents; which information it contains and what its role

is in the development process. When the expectations of the consumers of the docu-

mentation drift too far from the intentions of its producers, the ultimate consequence

might be a need to rediscover already documented knowledge. In such a situation, the

customer for example may need to explain his situation and requirements over and over

again to different parties in the development process.

If an author’s work is part of a team effort, as is the case in software development,

the intention an author has with his work cannot be detached from his expectation of

(the intention of) the work by other authors from that team. The author of, for example,

a requirements specification may intend that document to be slightly more prescriptive

than, say, a software architecture description, but only when the author has a certain

expectation of the prescriptiveness of the software architecture description. In this

sense, an author’s intent can only be expressed in terms relative to his expectation of

the other documents.

Ideally, the members of a development team share a certain understanding of (the

role of) the different types of documentation. Such a shared understanding would im-

ply that an author’s intentions are perfectly clear to others in the development team.

However, since the way in which one interprets and tacitly models the world (of which

software documentation is but a small part) is co-determined by such intangible things

as personal background, experience, and social interactions, we can expect different

levels of shared understanding between different development team members.

Suppose I am looking for a particular piece of knowledge in a set of documents.

Chances are that I will not read all documents, especially when the number of docu-
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ments is high. Instead, I will rely on a mental model of the documentation that I tacitly

built up. This model will tell me, for instance, whether some documents contain too

much detail, or are instead too vague, to satisfy my knowledge need. This is far more

likely to be a matter of heuristics rather than exact science, and I may even apply it

to documents that I’ve never even read (or, as a consequence, will ever read). My un-

derstanding of the documentation, represented by this model, may be entirely different

from the understanding of others – including that of the documents’ author(s). Con-

sequently, I may fail to find important information, or conversely the author may fail

to relay important information to me. In other words, my expectation or impression of

the contents and purpose of a document may not correspond to the contents or purpose

intended by the author.

We elicited and analyzed the mental models of software documentation from eight

members of a single development team. As expected, we found different levels of

shared understanding between different people. To our surprise, however, the shared

understanding within the team highly resembles the development process followed

within the organization. It seems that people who work on similar tasks share much of

the way in which they look at the project’s documentation, but this shared understand-

ing is lost when the number of ‘process hops’ increases.

From Conway’s law we know that the structure of an organization is mirrored in

the structure of the software that organization produces. Our findings suggest that the

organization’s development process may likewise be mirrored in the extent to which a

common frame of reference exists within a development team. Hence, the development

process followed may have implications for the effectiveness with which development

knowledge can be shared through software documentation.

The remainder of this chapter is organized as follows. In the next section, we briefly

introduce personal construct theory – the psychological theory upon which our research

is based – and some of its associated methods. In §17.4 we describe the methodology

we followed. In §17.5 we introduce the development organization in which our ex-

periment took place. §17.6 presents the results of the experiment and reconstructs the

shared understanding within the development team. In §17.7 we conclude this paper

with a discussion of the results we obtained.

17.2 Personal Construct Theory

The methodology we employ builds on personal construct theory, a constructivist the-

ory of personality and psychology developed by Kelly (1955). Personal construct the-

ory says that every individual observes the world in terms of bipolar ‘constructs’, such

as ‘good-bad’, ‘right-wrong’, et cetera. The use and definition of those constructs may
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differ from person to person. My comprehension of the construct ‘good-bad’ may not

be the same as yours. Together, a person’s constructs make up a personal mental model

of (part of) the world.

Kelly proposed not only a psychological theory, but also a method to systematically

elicit and analyze personal constructs. This method, called the Repertory Grid Tech-

nique (RGT), can be seen as “an attempt to stand in others’ shoes, to see their world

as they see it, to understand their situation, their concerns” (Fransella and Bannister,

1977).

The way RGT works is that it presents a subject with ‘triads’ of (i.e., groups of

three) elements from the domain under investigation. In our case, since we are inter-

ested in the way people see software documentation, those elements are documents.

When the three elements are presented, the subject is asked in which way two of them

are alike and the third one is different. This identifies a bipolar construct or axis that

is apparently part of the subject’s mental model. Given, for example, the triad {use

case specification, test charter, software architecture description} a development team

member might indicate that the use case specification and test charter have something in

common, and that the software architecture description is different. The next question

then would be: “What it is that makes the two documents similar and the other differ-

ent?”, to which the answer could be: “The use case specification and test charter both

show low-level details, and the software architecture description provides a high-level

overview”. This indicates that the construct ‘low-level details/high-level overview’ is

part of this person’s mental model.

Typical constructs that one may expect for software documentation include ‘abstract-

concrete’, ‘overview-detail’, ‘specification-implementation’ and many more. Recall

that those constructs are personal, hence their use and interpretation may differ be-

tween individuals. Two people who both distinguish ‘low-level detail’ documents from

‘high-level overview’ documents may disagree on the level of detail present in individ-

ual documents. Therefore, in a second step of RGT, the subject is asked to arrange

all documents, including the three just used to elicit the construct, on a 5-point scale

– from ‘low-level detail’ (1) to ‘high-level overview’ (5) – which provides insight into

the way in which the subject applies the construct. This process is repeated until the

method elicits no more new constructs.

The elements, constructs and rankings are kept in a tabular format called a ‘rank

order grid’. In this grid, the rows correspond to personal constructs, the columns cor-

respond to documents, and the cells contain a number from 1 to 5 that corresponds to

how a particular document ranks on a particular construct. The data from this grid can

be further analyzed.

The ‘Focus’ algorithm, for example, is a straightforward algorithm for cluster anal-

ysis of RGT data, which is simple enough that it can even be used to calculate element
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and construct clusters by hand (Jankowicz and Thomas, 1982). The algorithm involves

a pairwise difference calculation and subsequent iterative reordering of constructs and

elements “so that the differences between the resulting pairs are minimised”, eventually

producing a similarity matrix from which construct or element clusters can be derived.

Shaw and Gaines (1989) present another method to analyze repertory grid data.

The method entails a Focus-like comparison of constructs, but instead of comparing

constructs within the same grid (as Focus does), this method compares constructs from

different grids. Through this comparison, the relations between the ‘conceptual sys-

tems’ of two subjects can be analyzed. Shaw and Gaines define four types of relations:

consensus, correspondence, conflict, and contrast.

When there is consensus, ‘experts use terminology and concepts in the same way’,

i.e., two people use the same construct in a similar fashion. For example, two devel-

opment team members may both use the construct ‘abstract-concrete’ to distinguish

documents, If they do so in such a way that by and large documents that are abstract

according to one team member are also abstract according to the other, and documents

that are concrete according to the one are also concrete according to the other, there

would be consensus among the two regarding the construct ‘abstract-concrete’.

Two people may also ‘use different terminology for the same concepts’. This is

called correspondence and happens, for example, when two team members both dis-

tinguish documents based on their level of abstraction, but one of the team members

uses the construct ‘abstract-concrete’ for this distinction whereas the other uses the

construct ‘high level-low level’.

Conflict takes place when ‘experts use the same terminology for different con-

cepts’, e.g., when two people use the same construct ‘abstract-concrete’ but disagree

on which documents are abstract and which ones are concrete. And, finally, contrast is

when ‘experts differ in terminology and concepts’, i.e., when two constructs from their

respective rank order grids have nothing in common whatsoever.

17.3 Related Work

Several researchers have successfully applied personal construct theory and RGT to the

software development process. The main applications reported in the literature can be

summarized as ‘understanding the user’ and ‘understanding the developer’. Niu and

Easterbrook (2007), for example, report on the use of RGT in goal-oriented require-

ments engineering to compare and clarify stakeholders’ terminology. And Karapanos

and Martens (2007) use RGT as a means to characterize user diversity in (software-

intensive) product development. Examples of the use of RGT to understand developers

include the work of Baddoo and Hall (2002), who analyze the roles of practitioners in
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software process improvement, and Young et al. (2005), who analyze personality char-

acteristics of the members of an agile development team. In our work, we use RGT to

analyze the extent to which development team members have a shared understanding

of a software product’s documentation.

The topic of shared understanding, or shared mental models, between development

team members has received considerable attention. Klimoski and Mohammed (1994)

argue that such a model “implies a variety of content”, which means that “the content

of shared mental models might reference representations of tasks, of situations, of re-

sponse patterns or of working relationships”. In other words, there may be various

types of shared understanding between team members of which the shared understand-

ing of software documentation is only one. As far as we know, our study is the first

to relate shared understanding to the production and consumption of software docu-

mentation. Still, our findings seem to be in line with those of other researchers such as

Levesque et al. (2001) who show – through a focus not on documentation but on team

process and expertise – how an increase in role differentiation leads to less interaction

and eventually to a decrease in shared understanding.

17.4 Methodology

Based on the personal construct theory and analysis techniques introduced in §17.2,

we constructed a method to analyze the mental models of various development team

members regarding documentation. The method progresses through a number of steps:

the first step is elicitation of the personal mental models of software documentation, in

the next steps assessment of the levels of shared tacit and shared explicit understanding

between team members takes place, and finally the results of those two assessments

are combined to determine the aggregate level of shared understanding between team

members.

The distinction between shared tacit and shared explicit understanding is taken

from the field of knowledge management. In knowledge management, ‘tacit knowl-

edge’ pertains to the kind of knowledge one possesses but cannot easily express. ‘Ex-

plicit knowledge’, on the other hand, is the knowledge that can be expressed in various

forms, such as conversations, electronic communication, or writing (cf. (Nonaka and

Takeuchi, 1995)). Likewise, with ‘shared tacit understanding’ we mean the ‘align-

ment’ of two mental models without the individuals necessarily being able to express

the exact foundation upon which this alignment is based. With ‘shared explicit under-

standing’ we denote the possibility for two individuals to talk about the way they see

software documentation in terms that each of them can understand, i.e., relate to their

own mental models. Fig. 17.1 graphically depicts these two types of understanding.
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Early in project / late in 

project
What / how

Mental model

Mental model

tacit understanding

explicit understanding

Figure 17.1: Shared tacit and explicit understanding between individuals

The steps of our method are further described below. This description includes the

analysis methods we use, and their relation to personal construct theory from §17.2.

Elicit personal mental model We first elicit, using the Repertory Grid Technique, the

individual expectations and impressions regarding the documentation. This pro-

vides us for each of the development team members with personal constructs

that are used to distinguish and classify documents. Application of the Focus

algorithm leads to a clustering of documents, which captures a personal mental

model of the software documentation that may differ from person to person.

Determine level of shared tacit understanding A shared tacit understanding indicates

that different team members have similar mental models of the document set as

a whole, although it says nothing about how the individual mental models have

been built up. We therefore take the alignment of two personal mental models as

a measure for the level of shared tacit understanding between two team members,

disregarding the constructs upon which those mental models have been based.

In order to compare the alignment of different mental models of documentation,

we determine to what extent the documents clustering the team members per-
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ceive are correlated. The correlation between perceived document similarities

can be calculated using the so-called Simple Mantel Test (cf. (Bonnet and Peer,

2002)). A high correlation found by this test indicates that two different mental

models lead to similar document clusters, in other words that two individuals

share a tacit understanding of the documentation. A correlation ≥ 0.5 is gener-

ally considered to be large (cf. (Cohen, 1988)), so we use a correlation of 0.5 as

the lower bound to determine whether two development team members have a

shared tacit understanding of the documentation.

Determine level of shared explicit understanding In addition to the levels of shared

tacit understanding, we also determine the levels of shared explicit understand-

ing between the team members. With a shared explicit understanding we mean

that two development team members distinguish between documents in a simi-

lar fashion. For this distinction they need not necessarily employ the same ter-

minology. For example, one team member may distinguish between abstract

and concrete documents in much the same way as another team member dis-

tinguishes between early and late documents. Even though they do not use the

same terminology, the distinction can in principle be expressed and communi-

cated, provided that the two team members recognize that the terminology they

use is synonymous. Shared explicit understanding is complementary to shared

tacit understanding; a shared explicit understanding says nothing per se about

similarities between the tacit mental models.

In order to determine the level of shared explicit understanding, we determine

to what extent there is ‘consensus’ and/or ‘correspondence’ between two team

members, i.e., the extent to which constructs from two mental models are being

used in the same way, with the terminology used being the same (‘consensus’)

or different (‘correspondence’, cf. §17.2). Shaw and Gaines (1989) propose a

80% similarity threshold as the lower bound for correspondence and consensus.

We will consequently use this threshold to determine whether there is a shared

explicit understanding between two development team members.

Determine level of shared understanding By combining the results of steps 2 and

3, we determine the structure of shared (tacit and explicit) understanding in the

team. Whenever two individuals meet the thresholds of both shared tacit and

shared explicit understanding, we say that they have a ‘shared understanding’. A

shared understanding of the documentation implies similar expectations and/or

intentions regarding individual documents (with respect to the other documents,

cf. §17.1).
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17.5 Development Team

We conducted our study within a development team that is part of a large software

development organization. Software development is organized in what the organization

calls ‘development streets’. A development street provides a standardized environment

(i.e., processes and tools) for developing a particular type of software. There are for

example different development streets for the development of Java-based software and

for the development of dotNet-based software. The project we observed took place in

one of those development streets.

Business/Information Analyst

Software
Architecture

Technical
Architecture

Installation 
Manual

Vision 
Document

Use Cases

Test 
Scenarios

User 
Manual

System Analyst/
Requirements Specifier

Software Architect

Test Coordinator

Developer Designer Support

Project Manager

Figure 17.2: Development street

Fig. 17.2 shows the main stakeholders in the development street who produce or

consume documentation. It also shows the documents with dependencies where infor-

mation from one document is used in the production of another. The process can be

summarized as follows. The business analyst starts off with determining the stakehold-

ers, goals, and high-level functionality of the envisioned system, and reports the result

of his analysis in a vision document. From the contents of this document requirements

are derived, both functional and non-functional. The former are captured in use cases

by the system analyst, while the latter are part of the software architecture description

written by the software architect. Based on the use cases, the test coordinator devises
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test scenarios. The use cases are also reflected in the user manual (for which there usu-

ally is no dedicated author). From the software architecture description, the technical

architecture is derived. This document, together with the installation manual, is pri-

marily used by support personnel (for installation, configuration, administration, etc.).

Both technical architecture and installation manual are written by the software archi-

tect. Finally, the use cases and software architecture documents are used by designers

and developers in the construction of the actual software.

Fig. 17.2 originated from early discussions with one of the company’s senior em-

ployees. Based on this figure, we invited a total number of 8 individuals who all par-

ticipated, in different roles, in the same software development project. All invitees

participated in our study. In a later phase, we independently verified with the partici-

pants that the process depicted in Fig. 17.2 is indeed the process followed within this

development team1.

At the time of our study, the team was working on the second release series (2.x)

of the software. Together with the project manager, we selected a representative subset

of software product documentation to be used in the repertory grid experiment. We

had to make this selection since the number of documents produced in the project far

outnumbered the maximum number of elements (±20) that can feasibly be assessed by

the repertory grid technique.

Table 17.1 summarizes the participants and documents that took part in the exper-

iment. The roles listed are the job titles used by the participants themselves. Some

of them differ slightly from the generic overview in Fig. 17.2. Where participants

authored certain documents, those documents have been listed in their rows. The doc-

uments for which the author did not participate are listed at the bottom of the table.

17.6 Experiment and Results

In this section, we present the results for each of the steps of our methodology.

17.6.1 Personal construct elicitation

In eight separate interview sessions, we elicited personal construct for each of the eight

development team members that took part in our research. Each session lasted for ap-

1We asked the document authors to list the top 3 roles for which their documents were mostly intended.

By and large, their answers correspond to the process shown in Fig. 17.2. For example, the software archi-

tect listed himself, the lead developer and the developer as intended audience for the software architecture

description, and the support role as the primary target for the technical architecture description (followed by

developer and lead developer).
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Table 17.1: Participants and documents
Participant Role Documents authored

A Application developer

B Information architect Vision document

C Lead developer

D Application developer + support

E Project manager

F Application designer Vision document for release 2

Use case specifications

G Tester/testcoordinator Master test plan

Test charters

H Software architect Software architecture

Technical architecture

Installation manual

Infosec/risk assessment

Proposition for release 2

User manual

Glossary

proximately two hours, and at each session there were two attendees: the development

team member and the interviewer conducting the experiment. All interviews were con-

ducted by the same interviewer.

Before the start of the experiment, the participants were asked to briefly introduce

themselves and to describe their role in the project. During the experiment, no direct

questions about (the use of) the documentation were posed; all data about the doc-

uments was elicited through triads (cf. §17.2). No constructs were provided to the

participants in advance, and the interviewer took care not to provide or suggest any

constructs during the interview; all constructs were in the course of the experiment

proposed by the participants themselves.

We obtained eight rank order grids, one for each participant. Elicitation of personal

constructs lasted until the participants indicated the could think of no more additional

constructs different enough from the ones already provided. All participants provided

between 10 and 15 constructs before the elicitation was completed. Table 17.2 shows

the rank order grid of one of the participants as an illustration of the type of results we

obtained.

305



CHAPTER 17. READING AND UNDERSTANDING DOCUMENTATION

Table 17.2: Rank order grid for one team member
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earlier in project 1 3 2 3 4 4 4 4 4 4 5 5 later in project

execution 5 5 4 4 2 3 3 3 2 4 1 1 support

customer requirements 2 1 2 2 4 3 3 4 4 3 5 3 realisation

has to do with testing 5 5 5 5 2 1 1 5 5 3 5 2 has nothing to do with testing

time dependency 1 1 1 1 1 1 1 2 1 5 1 1 no time dependency

understood by user 4 4 4 4 1 2 4 5 5 1 5 1 not understood by user

functionality 2 2 2 2 1 1 2 4 5 2 5 1 technique

has to do with planning 5 1 1 1 5 1 1 3 5 5 5 5 has nothing to do with planning

has to do with functionality 4 3 3 3 1 1 3 3 5 4 5 1 has nothing to do with functionality

expectation 2 1 3 3 5 4 3 4 5 5 5 5 reality

concrete (for builders) 5 5 5 5 2 2 5 2 2 2 1 2 abstract (for builders)

says something about the application 4 4 4 4 1 4 4 3 3 4 3 1 says nothing about the application

has to do with infrastructure 3 3 3 3 5 5 4 2 1 5 1 5 has nothing to do with infrastructure

17.6.2 Shared tacit understanding

From the rank order grids of the eight development team members, the perceived sim-

ilarities between the documents can be calculated using the Focus algorithm. Docu-

ments that are similarly ranked across the constructs in a grid are more similar to each

other than documents that are ranked differently. This is illustrated in Fig. 17.3, which

shows a hierarchical clustering of documents based on the data from Table 17.2. The

numbers are the percental similarity scores calculated with Focus, e.g., the perceived

similarity between the Installation manual and the Technical architecture is 92% and

the similarity of that cluster with the Software architecture is 83%.

The perceived similarities between documents represent the individual’s mental

model of the software documentation. Table 17.3 shows the correlation between in-

dividuals’ mental models of product documentation, i.e., the document similarity ma-

trices. The correlations have been calculated using a simple Mantel test with 10000

randomizations. We interpret a high (r ≥ 0.5) correlation of perceived document sim-

ilarity as a shared tacit understanding of the documentation between team members.

From Table 17.3 we see that almost all correlations found are significant (low p-

value). The only non-significant correlation is between E and A, which suggests that

those two people do not share a tacit understanding of the documentation at all. Ap-
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92

Technical architecture
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Figure 17.3: Hierarchical clustering of documents based on data from Table 17.2

proximately half of the remaining, significant correlations are high (≥ 0.5) and indicate

a strong shared tacit understanding between the individuals involved. Some members

of the development team (e.g., H) seem to share their understanding with most other

team members, whereas some other people (e.g., B and E) strongly share an under-

standing with only one other team member. There is not a single person whose tacit

understanding is completely detached from the rest of the team, however.

17.6.3 Shared explicit understanding

Whereas in the previous section we analyzed the shared mutual tacit understandings

between development team members, in this section we will look at the explicit under-

standing that is shared between individuals. Below we show a summary of the team

members who have corresponding constructs at a similarity of 0.80 or higher.

Table 17.4 shows the constructs that team members use in a similar fashion. For
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Table 17.3: Shared tacit understanding
A B C D E F G

B
r 0.395271

p 0.002700

C
r 0.656839 0.420986

p 0.000100 0.005599

D
r 0.540594 0.486415 0.599269

p 0.000300 0.002200 0.000300

E
r 0.151361 0.408455 0.476889 0.400135

p 0.123588 0.002800 0.000300 0.007399

F
r 0.336944 0.641328 0.601511 0.498014 0.430471

p 0.004500 0.000100 0.000300 0.002300 0.002300

G
r 0.558442 0.469948 0.695907 0.544832 0.421918 0.560675

p 0.000100 0.002100 0.000100 0.000300 0.002300 0.000100

H
r 0.471787 0.439568 0.702911 0.519408 0.600942 0.500522 0.754730

p 0.000400 0.002500 0.000100 0.001900 0.000100 0.000800 0.000100

example, the way in which G applies the ‘concept’ vs. ‘final’ construct resembles the

way in which H applies the ‘realisation’ vs. ‘customer requirements’ construct. In

other words, documents that G regards as ‘final’ tend to be regarded by H as containing

customer requirements. From this table we can also see that F and D as well as F and

H share more than one way of applying constructs; for all the others correspondence

is limited to a single pair of constructs. F and H also account for the only instance of

consensus: they were the only ones to independently come up with literally the same

construct (functionality vs. technique) and to apply it similarly too.

Based on the data from Table 17.4, Table 17.5 shows which team members have

(one or more) correponding constructs. Hence, from Table 17.5 we can easily identify

who in the development team share an explicit understanding of the documentation.

17.6.4 Shared understanding

If we combine the data from Tables 17.3 and 17.5, we can identify which team members

share both a tacit and an explicit understanding. Table 17.6 depicts this combination,

and shows which team members share a tacit understanding(t), explicit understanding

(e), or both (t+e). Based on the data from Table 17.6, Fig. 17.4 shows a graph-like

structure in which team members that have a shared understanding (t+e) are connected.

For the sake of clarity, the roles of the team members and the documents they authored

have been added to the figure (cf. Table 17.1).

Fig. 17.4 seems to suggest that there is a shift in understanding of the product

documentation within the development team. A chain of people A ↔ B ↔ C is
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Table 17.4: Shared explicit understanding: Correspondence and consensus

Team members Corresponding constructs

A ↔ C

{

before start of project/end of project

begin/end

A ↔ G

{

written earlier/later
formal/informal language

B ↔ D

{

early/late in project

what/how

B ↔ F

{

quality/customer domain

unimportant/important (for me)

B ↔ G

{

solution domain/problem domain

concrete/abstract

C ↔ H

{

begin/end

supporting/execution

D ↔ F

{

how we will make the sw/how the sw has been made
about type of app/about app as made

{

first project phase/last project phase

about type of app/ about app as made

F ↔ H

{

about type of app/about app as made

abstract/concrete
- functionality / technique

G ↔ H

{

concept/final

realisation/customer requirements

Table 17.5: Shared explicit understanding
A B C D E F G

B

C X

D X

E

F X X

G X X

H X X X
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Table 17.6: Shared understanding (tacit + explicit)
A B C D E F G

B

C t+e

D t e t

E

F t+e t e

G t+e e t t t

H t+e t t t+e t+e

UC 
specs

Vision 
doc

Test 
charters

Master 
Test 
plan

B
Information Architect

H
Software architect

C
Lead developer

A
Application developer

G
Tester / testcoordinator

F
Application designer

Vision 
doc 2

SW 
Arch

Tech 
Arch

Install. 
manual

E
Project manager

D
Application developer

+ support

Figure 17.4: Shared understanding
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formed in which one person B may have a shared understanding with persons A and

C, whereas between A and C such a shared understanding does not exist. In a way,

the figure resembles a familiar children’s game known as ‘Chinese whispers’. In this

game, a sentence is whispered in the ear of the first child, who whispers it to another

child, and so on, until the last child is reached who says the sentence out loud. Hardly

ever will the sentence that the last child heard be the same sentence that was given to

the first child, since the message that was passed suffers from accumulated errors and

distortions.

This chain-like structure of shared understanding obviously has repercussions for

the way in which people’s expectations of documentation do or do not match the inten-

tions of the authors in the chain. If we look again at Fig. 17.4, we see that the author of

the Vision document (B) has a shared tacit and explicit understanding with F only. This

implies that his intentions for the Vision document are really only fully understood by

F. The further down the chain, the less likely it is that people fully appreciate this doc-

ument. A central role in this picture is for H, which suggests that other team members’

expectations regarding the Software architecture, Technical architecture, and Installa-

tion manual are probably most aligned to the intentions of their author. The figure also

suggests that, for whatever reason, E and D may experience the most trouble when ex-

ploring the documentation since both of them share no tacit and explicit understanding

with any of the other participants in our experiment (although they do have a shared

tacit or explicit understanding with various team members). Note, however, that a lack

of shared understanding does not imply that team members cannot or do not read the

information in the documentation. Rather, the documents’ contents may be placed and

interpreted in a context different than the one the author envisioned – for example, a

document may be seen by the reader as providing guidelines rather than prescriptions

as the original author intended.

17.7 Discussion and Conclusion

One of the most striking observations from the structure in Fig. 17.4 is its obvious re-

semblance of the process in Fig. 17.2. People that are close to each other in the devel-

opment process – because one of them uses a document that was produced by the other

– also tend to have a shared understanding of the software documentation2. Although

not a perfect match, the process followed in which high level business information is

stepwise refined into more technical information is highly visible in Fig. 17.4.

2Note that, even though participant F uses the job title ‘application designer’, his role seems to have been

more that of an analyst and requirements specifier evidenced by the documents he authored.
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We should reiterate here that the derivation of Fig. 17.4 is completely detached from

the derivation of Fig. 17.2. In the latter case, we directly asked for information about

the development process, while the structure of shared understanding in Fig. 17.4 has

been fully based on participants’ statements about the software documentation. That

we were able to reconstruct an approximation of the development process based on

statements solely about the documentation is a remarkable (and unexpected) result.

We understand that our findings should be further tested and verified. We know

for example that the team we observed has had some issues related to documentation,

especially the tendency to go back to the customer for clarifications. Although we can

explain this behavior with the results we obtained, we cannot be completely sure that

our explanation is the correct one. We would also like to know whether our method

obtains similar results in different organizations.

Nevertheless, there seems to be an important lesson in our findings: it appears

that the development process one follows is reflected in the way in which individual

team members understand each other. This has obvious implications for areas such as

process management and process improvement. A long, chain-like process for instance

may lead to knowledge dissipation more easily than a compact, web-like structure.

Consequently, if one wants to enhance a team’s common frame of reference, the way

in which the development process supports collaboration between individuals could be

key.
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Conclusions

In this part we have studied how to support auditors in discovering architectural knowl-

edge. We have devised tools that support the discovery of SOLL-AK and IST-AK in the

input respectively throughput stages of an audit. We have also addressed the relation

between requirements and architecture, and explored the reason why sharing archi-

tectural knowledge through written documentation is hard. In this chapter, we revisit

the research questions answered in this part and summarize the answers our research

provided, and discuss additional pointers to further research.

18.1 Contributions

In this section, we revisit the research questions answered in this part and summarize

the answers our research provided. Recall that auditors rely on architectural knowl-

edge pertaining to the desired state of a software product, as well as to the current state

of that product. Hence, in order to support auditors in discovering relevant architec-

tural knowledge, we must enhance the discoverability of SOLL-AK as well as that of

IST-AK. Our answer to the main research question (RQ-III.1) is therefore provided

by the answers to the two subquestions RQ-III.2 and RQ-III.3 in the following two

subsections.

18.1.1 How can the discoverability of relevant SOLL-AK be
enhanced? (RQ-III.2)

In Chapters 14 and 15 we have examined how the discoverability of relevant SOLL-

AK, i.e., architectural knowledge pertaining to the desired state of a software product,

can be enhanced. Recall that this particular type of architectural knowledge consists of
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a customer’s high-level quality requirements which are subsequently enhanced by the

auditor to form quality criteria: concrete measures that should or should not be present

in a software product.

To answer RQ-III.2, in Chapter 14 we first answered subquestion RQ-III.4: what

is the relation between requirements and architecture? In that chapter, we argued that

there is no fundamental distinction between architecturally significant requirements

and architectural design decisions. Drawing on the similarity between requirements

and architecture, in Chapter 15 we answered subquestion RQ-III.5 (how can the reuse

of quality criteria be supported?) by drawing analogies between quality criteria and

architectural design decisions. This led to the definition of QuOnt, an ontology for

codification of quality criteria. QuOnt is a partial extension to Kruchten’s ontology of

architectural design decisions, and augments that ontology with explicit, reified ‘effect’

relations between quality criteria (or design decisions) and quality attributes, as well as

comparisons between these effects.

In that same chapter, we introduced ontology-driven visualization as a novel way

to visualize architectural design decisions, especially quality criteria. This visualiza-

tion combines the strengths of two existing types of design decision visualization and

overcomes their weaknesses. A prototype decision support system based on QuOnt

and ontology-driven visualization was discussed as a proof of concept. This proof of

concept showed how this combination of QuOnt and ontology-driven visualization aids

auditors in reusing quality criteria, i.e., helps them discover relevant SOLL-AK.

18.1.2 How can the discoverability of relevant IST-AK be en-
hanced? (RQ-III.3)

In Chapters 16 and 17 we have examined how the discoverability of relevant IST-AK,

i.e., architectural knowledge pertaining to the actual state of a software product, can be

enhanced. We have focused especially on the architectural knowledge that is reflected

in the documentation that accompanies a software product.

In Chapter 16, we answered the question how the discovery of architectural knowl-

edge in software product documentation can be supported (RQ-III.6). We argued how

Latent Semantic Analysis (LSA) can be used to uncover the latent semantic structure

that underlies the software product documentation, and how this LSA-space can be

explored to construct a ‘reading guide’. We also introduced a way to reconstruct the

auditors’ mental models of the documentation by means of the repertory grid tech-

nique. We compared the mental models of two auditors with the model resulting from

LSA to validate the working of our proof of concept.

We also used the repertory grid technique in Chapter 17 to answer the question why

sharing architectural knowledge through written documentation is so hard (RQ-III.7).
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In this chapter, we compared the mental models of software documentation from eight

members of a single development team. We concluded that the extent to which team

members have a shared understanding of the documentation reflects the development

process that the team follows.

Since auditors are generally not part of the development team that produces the

product to be audited, our findings from Chapter 17 lead to a dual answer to the ques-

tion how the discoverability of relevant IST-AK can be enhanced (RQ-III.3). On the

one hand, the use of text mining techniques such as LSA has a proven advantage to

locate relevant architectural knowledge in product documentation. On the other hand,

such technological solutions are probably not a panacea. Auditors will have to stay

in touch with the product’s supplier and talk with members of the development team,

since being in touch seems the key to the development of shared understanding. In

short, engineering high-quality software is as much about people as it is about technol-

ogy.

18.2 Discussion

A research project is never finished. Answers lead to new questions, and results lead

to new ideas. Some ideas for future work have already been discussed in the previous

chapters. In this section, we conclude Part III with a discussion on the results presented

in this part and additional pointers to further research.

18.2.1 Requirements and architecture: Towards tighter col-
laboration

Our claim that architectural design decisions and architecturally significant require-

ments are really the same, only observed from different directions, is one that many

may find provocative, or even controversial. Even though it may be controversial, our

claim is intended to be constructive since we feel it may open the road towards tighter

collaboration between the requirements and architecture fields.

Currently, the challenges in requirements management and architectural knowledge

management are approached as if there are two separate ‘information wells’. Both

communities perform research on comparable challenges without paying too much at-

tention to what the others are doing. If we recognize and acknowledge that both com-

munities are in fact looking at the same ‘magic well’ from different angles, we open

the door for tighter collaboration between the fields as well as reuse of each other’s

research results.
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Although there are still many open issues in requirements management, when com-

pared to architectural knowledge management that field is much more mature. This is

not to say that the current work in researching architectural knowledge management

is in vain. On the contrary, innovations in architectural knowledge management might

have a beneficial impact on requirements management problems as well. However, we

as a software architecture community can probably learn a great deal from our col-

leagues in requirements engineering.

The magic well has yet another implication: software architecture is not merely

the domain of the architect. Each architecturally significant requirement is already

a decision that shapes the architecture. Requirements engineering and software ar-

chitecture have considerable overlap, but also use different perspectives. We should,

therefore, further align our tools, methods, and techniques by focusing more on our

common ground, rather than on our differences. Further exploring and exploiting the

commonalities between architecturally significant requirements and architectural de-

sign decisions would serve that goal.

18.2.2 QuOnt and LSA: A quality evaluation toolkit

Our research has led to the implementation of two proofs of concept: a decision support

system for quality criteria reuse, based on the QuOnt ontology, and an LSA-based text

analysis prototype. We have presented and discussed them as separate tools, but a

combination of the two could lead to a synergetic ‘quality evaluation toolkit’.

Through such a quality evaluation toolkit, parts of the software product documenta-

tion could be automatically related to particular quality criteria. To this end, the textual

description of a quality criterion could be used as a ‘document’ in the LSA-space. The

quality criterion document could even be augmented with further background informa-

tion, e.g., the Wikipedia page for ‘Failover’ could be used for the quality criterion that

the product should use failover. After the quality criterion document has been placed

in the LSA-space, parts of the documentation that have a meaning closely related to the

meaning of that quality criterion (i.e., that ‘talk about’ issues related to that criterion)

can be identified through similarity calculations. Such a toolkit would create a dynamic

index to the product documentation from the quality criteria used in the audit.

Since the QuOnt ontology defines relations between quality criteria and between

quality attributes, further relations between product documentation parts can be in-

ferred. For example, the toolkit could infer that an interest in performance implies an

interest in both resource behavior and time behavior, or that an interest in user authen-

tication measures includes an interest in such topics as passwords and single sign-on.

The toolkit could then locate product parts that talk about topics related to a topic of

interest through a combination of inference and latent semantic analysis.
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18.2.3 Personal construct theory as knowledge management
instrument

In Chapters 16 and 17 we have seen the application of personal construct theory, and

especially the repertory grid technique, to the elicitation and comparison of personal

mental models of software documentation. The assessment of ‘levels of shared un-

derstanding’ between development team members in Chapter 17 connects the realm of

explicit architectural knowledge (in documents) with that of tacit or implicit architec-

tural knowledge (in people’s minds). In other words, this assessment addresses aspects

related to both codification and personalization.

An interesting question, therefore, is whether we can use personal construct theory

as a knowledge management instrument in its own right. We can think of several ap-

plications that might have a beneficial impact on software development. For example,

one of the goals of knowledge management is to preserve knowledge possessed by key

individuals in the organization. A valid question, therefore, is who are the key indi-

viduals in the organization, in terms of the type of knowledge they possess. Analysis

of personal constructs could help the identification of ‘knowledge hubs’, i.e., people

who form a connection between different kinds of knowledge in the organization. In

Chapter 17, for instance, the software architect seems to act as such a knowledge hub

between analysts and developers.

Other applications of personal construct theory and assessment of shared levels of

understanding might be more proactive. For instance, one could steer the training of

development team members to repair ‘gaps’ in shared understanding (this would, by

the way, probably work better for the improvement of shared explicit understanding –

the vocabulary – than for tacit understanding). Or, to go one step further, one could

try to form a development team for a new project based on a priori (historical) data

on their mutual levels of shared understanding, so that the development team attains a

high number of ‘knowledge connections’ between the team members, and hence a high

overall level of shared understanding within the team.

Such applications as the ones we sketch above may be worthwhile to investigate.

Further research would be necessary to assess the validity and applicability of these

ideas.

18.2.4 Architectural knowledge discovery in a broader scope

In this thesis, we have equalled ‘architectural knowledge discovery’ (AKD) to an en-

hanced discoverability of relevant architectural knowledge in the context of software

product audits. We believe, however, that AKD has merit in a broader scope.

We envision knowledge discovery techniques being used in a broad range of ar-
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chitectural knowledge management tools and methods. The role of AKD would in-

clude the refinement of existing architectural knowledge from such diverse sources as

documents, email, meeting minutes, and source code. Those sources contain mainly

unstructured (documents, etc.) or at best semi-structured (source code) information.

Refinement by AKD would therefore mainly consist of adding structure to this in-

formation. We may also envision AKD in a forward-engineering sense, to judge the

quality of the evolving (architectural or otherwise) documentation of a system, and to

give guidelines as to where the documentation needs attention.

Architectural knowledge refinement could play a major role in the transition from

personalization to codification (cf. §3.4). In the early phases of architecting, often little

attention is paid to a structured description (codification) of the architectural knowl-

edge that is created, such as the architectural design decisions taken and the alterna-

tives considered. More emphasis is usually put on personalization, i.e., knowing who

knows what and discussing options and issues directly with peers. It is usually only

after the fact – if ever – that the architectural knowledge created during this process

is captured in architectural descriptions and other documents. However, this early ar-

chitecting phase often leaves many traces in for example minutes, emails, or forum

discussions. AKD could be employed to mine and structure those traces of unstruc-

tured information, thereby providing semi-automated support for effective codification

of the architectural knowledge.
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Quo Vadis?

In this thesis, we have discussed how architects and auditors can be supported by em-

ploying architectural knowledge management practices to their daily work. Notable

contributions of this thesis – discussed in more detail in the concluding chapters 5, 12,

and 18 of Parts I to III – include:

∙ Theoretical models of architectural knowledge and architectural knowledge man-

agement, including the development of a core model of architectural knowledge

and the recognition of different philosophies of architectural knowledge man-

agement.

∙ The development and evaluation of knowledge management tools, including

knowledge sharing portals, wikis, decision support systems, and text mining sys-

tems.

∙ Insights regarding the nature of architectural knowledge management, includ-

ing the recognition that architecturally significant requirements and architectural

design decisions are really the same and the observation that architectural knowl-

edge codification alone is not enough.

In their overview of the maturation of the software architecture field, Shaw and

Clements (2006) conclude with an outlook on future work in software architecture

research. They argue that promising topics for research include a focus on architectural

design decisions and their link to quality attributes, and the organization of architectural

knowledge to create reference materials. In a follow-up on their article, Shaw and

Clements (2009) reiterate the strong potential of a focus on design decisions. We like

to think that our research proves them right.

Like Shaw and Clements, we like to take this opportunity to provide our own view

on software architecture research in the foreseeable future. We see four main trends
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that mostly focus on specific use cases for architectural knowledge management:

1. Sharing architectural knowledge, especially in a globally distributed setting.

2. Further aligning architecting with requirements engineering, focusing on the

commonalities instead of differences between the two domains;

3. Intelligent support for architecting, focusing on specific architecting use cases

related to intelligent and/or real-time support for architects;

4. Establishing a body of application-generic architectural knowledge, to further

promote learning and reuse.

These trends correspond to current areas of active research, which are related to

the research in this thesis. Sharing in a globally distributed setting is a step beyond

the more ‘local’ sharing of architectural knowledge that was the subject of Part II.

Alignment of requirements engineering and architecting may build on the similarities

between the two fields as identified in Chapter 14. Intelligent support for architecting

may use aggregations of knowledge technologies such as the ones described throughout

this thesis. And, finally, the establishment of a body of architectural knowledge may

on the one hand draw on knowledge structures such as the core model from Chapter 4

and the QuOnt ontology from Chapter 15, and on the other hand provide a consensus

of expert knowledge that intelligent architecting decision support systems necessarily

rely on.

An additional area that currently seems not to be on the research agenda is the inves-

tigation of commercial aspects of architectural knowledge management. Apart from the

‘technocratic’ (i.e., codification) and ‘behavioral’ (i.e., personalization) schools, Earl’s

taxonomy of knowledge management strategies identifies the ‘economic schools’, which

focus more on knowledge assets than on knowledge bases or knowledge exchange. In

our opinion, this warrants future research in the direction of commercialization of ar-

chitectural knowledge, i.e., the protection and exploitation of architectural knowledge

to produce revenue streams.
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Het is onmogelijk ons nog een wereld zonder software voor te stellen. Software is een

onlosmakelijk deel gaan uitmaken van ons dagelijks leven, soms zonder dat we ons er al

te zeer van bewust zijn. In de supermarkt worden onze boodschappen aan de hand van

barcodes ‘gescand’. We betalen met onze pinpas, of halen met diezelfde pas geld ‘uit

de muur’. Bij autopech wordt eerst de boordcomputer uitgelezen voordat de motorkap

open gaat. Steeds meer mensen bellen via ‘Voice over IP’ (VoIP), waarbij telefoonge-

sprekken feitelijk over computernetwerken lopen. Aandelenbeurzen, nieuwsdiensten,

treinen, vliegtuigen, ziekenhuizen, mobiele telefoons, televisies en hard disk recorders;

overal waar we kijken draait de wereld op software.

Het bouwen van die software, en met name het bouwen van zeer grote software-

systemen, staat ook wel bekend als ‘software engineering’. Binnen de software engi-

neering is men continu op zoek naar betere technieken om betere software te bouwen.

Hierbij dient opgemerkt te worden dat software engineering als discipline eigenlijk

nog maar betrekkelijk jong is. De term ‘software engineering’ ontstond weliswaar als

analogie naar andere ingenieursdisciplines – met name bouwkunde was een bron van

inspiratie – maar de 40 jaar die verstreken zijn sinds de term in gebruik kwam staan in

geen verhouding tot de duizenden jaren bouwkundige historie.

De bouwkundemetafoor is ook terug te vinden in het deelgebied dat bekend is ko-

men te staan als ‘software-architectuur’. Software-architectuur behelst het structureren

en modelleren van software in modulaire eenheden op een hoger abstractieniveau dan

dat van de implementatie (de uiteindelijke ‘code’). Door code op een logische ma-

nier te groeperen in modules en de interne werking van een module als het ware af te

schermen voor de buitenwereld (waaronder andere modules) wordt het mogelijk op een

andere manier naar de werking van software te kijken dan wanneer we de details van

de software regel voor regel zouden bestuderen. En door vooraf over de architectuur na

te denken kan deze een leidraad vormen voor de latere implementatie van de software.

Van de software-architectuur wordt dan ook wel gezegd dat deze de manifestatie is van

de vroege ontwerpbeslissingen.

Sinds begin jaren zeventig, toen het begrip software-architectuur in zwang raakte,

is er in het vakgebied veel vooruitgang geboekt met het beschrijven en analyseren van

software-architecturen, vaak in termen van ‘componenten’ (de bouwblokken) en ‘con-

nectoren’ (de verbindingen tussen die bouwblokken). Het beschouwen van architectuur

als samenstelling van componenten en connectoren betekent echter dat we architectuur

altijd zien als het eindresultaat, en nooit als de weg naar dat resultaat toe. De com-

ponenten en connectoren per se vertellen ons immers niets over de afwegingen die de

software-architect heeft gemaakt, de alternatieven die hij heeft overwogen (en verwor-

pen), de bij deze overwegingen betrokken belangen, et cetera. Kortom, door alleen te
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kijken naar het eindresultaat wordt belangrijke kennis omtrent de architectuur buiten

beschouwing gelaten. Wanneer architectuurkennis slechts gedeeltelijk wordt overge-

dragen, dan leidt dat tot additionele, moeilijk te kwantificeren kosten. Bovendien kan

deze onvolledige kennisoverdracht leiden tot zogenaamde ‘ontwerp-erosie’.

Het begrip ‘architectuurkennis’ krijgt de laatste jaren meer en meer nadruk. Er

zijn vier belangrijke perspectieven op wat zulke architectuurkennis precies inhoudt,

gedreven door vier dominante toepassingen van die kennis. Ten eerste is er de min of

meer klassieke benadering van architectuurkennis als (geformaliseerde) kennis over de

componenten en connectoren. Dit perspectief komt met name voort uit de toepassing

van dynamische architecturen voor bijvoorbeeld ‘zelfhelende’ systemen: systemen die

hun eigen software kunnen analyseren en de architectuur van die software zelf aan

kunnen passen om bijvoorbeeld defecte componenten uit te schakelen en te vervangen

door alternatieven.

Vanuit een tweede perspectief wordt architectuurkennis gedocumenteerd in een

groeiende collectie van zogenaamde ‘ontwerppatronen’ die kennis over herhaald op-

tredende problemen koppelt aan bewezen oplossingen. Deze patronen (of ‘patterns’)

worden benoemd en besproken in boeken en op conferenties, en zijn daarmee zowel

een vorm van kennisoverdracht als een verrijking van het vocabulaire dat de software-

architect ter beschikking staat.

Een derde perspectief op architectuurkennis behelst de traceerbaarheid van de ar-

chitectuur naar het onderliggende pakket van eisen en wensen. Slechts wanneer deze

traceerbaarheid in orde is kunnen wijzigingen in de eisen (bijvoorbeeld door een ver-

anderende klantvraag, maar ook door veranderingen in wet- en regelgeving of nieuwe

technologische doorbraken) vertaald worden naar wijzigingen in de architectuur. Om-

gekeerd kan een bestaande architectuur invloed hebben op de (on)mogelijkheid om

nieuwe of veranderende eisen te realiseren.

Ten slotte is er een vrij recente benadering van architectuurkennis als de ontwerpbe-

slissingen die leiden tot het architectuurontwerp. Vanuit dit perspectief dienen de ont-

werpbeslissingen als concrete entiteiten te worden onderkend. In tegenstelling tot het

uiteindelijke architectuurontwerp hebben de ontwerpbeslissingen intrinsieke relaties

met de overwogen alternatieven, de uiteindelijk gekozen oplossing, en de verschillen-

de belangen – waaronder economische, politieke, en technologische randvoorwaarden

– die een rol gespeeld hebben in het beslissingsproces. In een groter verband kan een

focus op ontwerpbeslissingen dan ook gebruikt worden om de verschillende ‘vormen’

van architectuurkennis op een lijn te brengen en aan elkaar te relateren.

Dit proefschrift is een resultaat van het GRIFFIN onderzoeksproject waarin indu-

striële en academische partners samengewerkt hebben aan betere manieren voor archi-

tectuurkennismanagement. Ons onderzoek is gestoeld op een beslissingsgeoriënteerd

perspectief op architectuurkennis. Wij beschouwen het beslissingsproces als een lus,
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waarin afgewogen wensen en eisen leiden tot ontwerpbeslissingen die vervolgens weer

leiden tot nieuwe wensen en eisen die in vervolgbeslissingen meegewogen worden, et

cetera, et cetera. Een analyse van vier verschillende organisaties aan de hand van een

model waarin deze ‘beslislus’ centraal staat heeft geleid tot de identificatie van vier

probleemgebieden met betrekking tot architectuurkennismanagement: het delen van

architectuurkennis binnen en tussen organisaties, het ontdekken van relevante architec-

tuurkennis in bestaande documenten en informatiesystemen, het voldoen aan opgestel-

de architectuurregels en richtlijnen, en het traceren van de verbanden tussen ontwerp-

beslissingen en andere kennisentiteiten. Hieruit zijn binnen het GRIFFIN project vier

overeenkomstige onderzoekslijnen ontstaan. In dit proefschrift gaan we in op twee van

de geı̈dentificeerde problemen: het delen van architectuurkennis, vanuit het perspectief

van de software-architect die verantwoordelijk is voor het ontwerpen van de software;

en het ontdekken van architectuurkennis, vanuit het perspectief van de auditor die een

kwaliteitsanalyse van de ontwikkelde software uitvoert.

Het delen van architectuurkennis is belangrijk omdat architecten typische kennis-

werkers zijn. Zij spelen vaak een centrale rol in het softwareontwikkelproces en zijn

verantwoordelijk voor het nemen van belangrijke ontwerpbeslissingen. Hiervoor com-

municeren ze met allerlei belanghebbenden over technische en niet-technische zaken,

en proberen ze de beste afwegingen te maken rekening houdend met de wensen en ei-

sen van deze belanghebbenden. Effectieve methoden en technieken om architecten te

helpen kennis te delen zijn zeer gewenst. In dit proefschrift presenteren we verschil-

lende van deze methoden en technieken.

Om na te gaan wat voor methoden en technieken architecten kunnen helpen in het

delen van architectuurkennis hebben we vier praktijkstudies uitgevoerd bij een soft-

wareontwikkelorganisatie. Om de verkregen resultaten nader te valideren hebben we

aansluitend een vijfde studie uitgevoerd: een vragenlijstonderzoek waaraan architec-

ten van vier organisaties in Nederland hebben deelgenomen. Deze vijf studies passen

goed binnen een zogehete ‘action research’ cyclus die bestaat uit een diagnostische

fase, gevolgd door enkele ontwikkelfases en een evaluatie- en reflectiefase. Deze kwa-

litatieve onderzoeksmethodiek stelde ons in staat om in nauwe samenwerking met de

architecten de huidige problematiek met betrekking tot het delen van architectuurken-

nis boven water te krijgen, en tot bruikbare oplossingen en verbeteringen te komen die

goed aansluiten bij hun activiteiten en kennisbehoeften.

Tijdens een eerste diagnose hebben we het gebruik van bestaande hulpmiddelen

voor het delen van architectuurkennis onderzocht. Wat hierbij opviel, was dat architec-

ten deze hulpmiddelen grotendeels naast zich neer legden. Tijdens interviews werden

hier verschillende verklaringen voor gegeven, waaronder de steile leercurve van deze

hulpmiddelen, de tijd die het kost om deze hulpmiddelen te gebruiken en de beperkte

toegevoegde waarde ten opzichte van meer traditionele communicatievormen waaron-
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der telefoon of e-mail. Architectuurkennis bleek in deze organisatie veelal gedeeld

te worden tijdens informele bijeenkomsten of op de gang bij de koffieautomaat. Het

bleek dat kennisdeling middels specialistische hulpmiddelen iets is waar architecten

gemotiveerd voor moeten zijn. In ons onderzoek hebben we een aantal voorwaarden

gedefinieerd die noodzakelijk zijn om een omgeving te creëren waarbinnen architecten

aangemoedigd worden om hun kennis te verspreiden.

De volgende fase van ons onderzoek behelste het ontwerpen van efficiëntere hulp-

middelen voor het delen van architectuurkennis. Na een uitgebreide inventarisatie van

de wensen van architecten zelf en door gebruik te maken van inzichten bekend uit

de literatuur, hebben we een zevental eigenschappen opgesteld waaraan hulpmidde-

len dienen te voldoen. Op basis van deze eigenschappen hebben we vervolgens in

twee opeenvolgende praktijkstudies multifunctionele, webgebaseerde IT-omgevingen

geı̈mplementeerd die het mogelijk maken om verschillende typen architectuurkennis

efficiënt en op het juiste moment te delen. De evaluaties van deze omgevingen door

architecten laten zien dat dit soort ‘all-round’-oplossingen uitermate geschikt zijn om

het delen van architectuurkennis binnen een organisatie te bevorderen.

Ons onderzoek naar efficiënte ondersteuning voor het delen van architectuurken-

nis heeft een aantal belangrijke inzichten opgeleverd. Een van deze inzichten is dat

architecten naast het maken van architectuuroplossingen zich met veel andere kennis-

intensieve activiteiten bezig blijken te houden. Dit inzicht is op zichzelf niet heel ver-

rassend, maar dit betekent wel dat kennismanagementondersteuning voor architecten

zich moet richten op al deze activiteiten en niet beperkt moet blijven tot bijvoorbeeld

een hulpmiddel om architectuurmodellen te maken.

Een ander belangrijk inzicht is dat niet alle architectuurkennis eenvoudig expliciet

te maken is. Kennismanagementonderzoekers, en zeker degenen die zich richten op

het IT-domein, hebben vaak de neiging om de oplossing voor kennisdeling te zoeken

in sjablonen, databanken of andere opslagmechanismen waarmee de kennis in een be-

paalde vorm gegoten wordt en vervolgens eenvoudig te hergebruiken is. Dit principe

heet ‘codificatie’ van kennis. Veel expertkennis blijkt echter heel lastig om op deze

manier vast te leggen. Voor het delen van dit soort kennis is het beter om een andere

kennismanagementstrategie te volgen. Dit noemen we ‘personalisatie’ van kennis, wat

inhoudt dat niet de kennis zelf opgeslagen wordt maar informatie over de kennisbron,

dat wil zeggen de persoon die die kennis bezit. Kennisdeling kan dan plaatsvinden

door de persoon te benaderen en hiermee te communiceren. Op deze manier kan be-

paalde expertise ook overgedragen worden aan collega’s. Uit ons onderzoek blijkt dat

architectuurkennis het meest efficiënt gedeeld wordt in een organisatie door gebruik te

maken van zowel codificatie- als personalisatiemechanismen. We pleiten daarom voor

hybride ondersteuning voor het delen van architectuurkennis en laten in dit proefschrift

zien welke voordelen zo’n strategie heeft in de praktijk.
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Daar waar architecten verantwoordelijk zijn voor het ontwerpen van een software-

architectuur, zijn auditors verantwoordelijk voor een kwaliteitsanalyse van het uitein-

delijke softwareproduct. Voor deze taak is het ontdekken van relevante architectuur-

kennis in bestaande documenten en auditspecifieke informatiebronnen van belang. Im-

mers, de auditor zal de bestaande, gedocumenteerde architectuur moeten vergelijken

met de (kwaliteits)eisen van de klant – vaak door eerst concrete maatregelen (‘kwali-

teitscriteria’) te definiëren die al dan niet in het softwareproduct aanwezig moeten zijn.

Dit kennisintensieve proces wordt in de regel gekenmerkt door een overdaad aan zowel

documentatie als potentiële kwaliteitscriteria.

De al eerder beschreven beslislus maakt duidelijk dat er geen strikt onderscheid

gemaakt kan worden tussen ‘eisen’ en ‘ontwerpbeslissingen’. In feite zijn eisen die

invloed hebben op de architectuur namelijk ook ontwerpbeslissingen, in die zin dat ze

– net als andere ontwerpbeslissingen – randvoorwaarden scheppen voor vervolgbeslis-

singen. Kwaliteitscriteria bepalen dus ook een architectuur, zij het als ideaalbeeld: ze

beschrijven hoe de architectuur van het softwareproduct er uit zou moeten zien.

Er is sprake van een zekere mate van herbruikbaarheid van kwaliteitscriteria in ver-

schillende audits. Zo zal voor een willekeurig systeem waarvoor veiligheid een belang-

rijke kwaliteitseis is vrijwel altijd een vorm van gebruikersauthenticatie (bijvoorbeeld

middels een wachtwoord) noodzakelijk zijn. Het vóórkomen van gebruikersauthenti-

catie is dus een kwaliteitscriterium dat voor al deze systemen geldt.

In een auditorganisatie waar wij het hergebruik van kwaliteitscriteria hebben onder-

zocht, bleek zulk hergebruik in eerste instantie te bestaan uit het herlezen van eerdere

auditrapporten om daarin kwaliteitscriteria toepasbaar binnen een nieuwe audit te iden-

tificeren. Om het hergebruik van kwaliteitscriteria beter te ondersteunen ondernam de-

ze organisatie ook pogingen om een elektronische ‘catalogus’ van kwaliteitscriteria op

te zetten, waarin echter geen ruimte was voor onderlinge relaties tussen de criteria. Op

basis van een bestaande ontologie van ontwerpbeslissingen hebben wij een ontologie

voor kwaliteitscriteria voorgesteld die gebruikt kan worden om kennis omtrent zulke

criteria vast te leggen en vervolgens met deze kennis te redeneren, ondersteund door

een vernieuwende visualisatie van ontwerpbeslissingen. Middels scenario’s hebben we

aangetoond hoe deze combinatie van ontologie en visualisatie de auditor bij aanvang

van een nieuwe audit ondersteunt bij het ontdekken van relevante kwaliteitscriteria.

De selectie van kwaliteitscriteria is echter pas een eerste stap in een audit. Daarna

zal het softwareproduct zelf moeten worden geanalyseerd, om zodoende vast te stel-

len of en waar het product niet aan de kwaliteitscriteria voldoet. De documentatie

die bij een softwareproduct wordt geleverd is voor deze analyse een belangrijke infor-

matiebron. Zulke productdocumentatie beslaat echter meestal tientallen tot soms wel

honderden documenten, die door de auditor vaak onder enige tijdsdruk moeten worden

bekeken. Het spreekt voor zich dat het onmogelijk is om alle documenten tot in de-
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tail te bestuderen. Omdat een leeswijzer vrijwel altijd ontbreekt zijn auditors op hun

ervaring en gevoel aangewezen om een selectie te maken tussen teksten die wel tot in

detail worden geanalyseerd en teksten die slechts oppervlakkig worden gelezen of ter

kennisgeving worden aangenomen.

Uit ons onderzoek blijkt dat het heel goed mogelijk is auditors bij deze selectie te

ondersteunen door toepassing van latent semantic analysis (LSA), een vorm van ge-

automatiseerde tekstanalyse. Met behulp van LSA waren we in staat een interactieve

leeswijzer op te stellen, waarmee auditors die documenten kunnen vinden die voor hen

van belang zijn. Zo willen auditors in de regel aan het begin van een audit snel inzicht

krijgen in de architectuur van een softwareproduct, om daarna langzaam maar zeker

in te zoomen op verschillende onderdelen van het systeem. Onze leeswijzer wees een

factsheet van slechts twee pagina’s aan als eerst te lezen document. Deze factsheet

bleek, hoewel het woord ‘architectuur’ er niet letterlijk in voorkwam, inderdaad een

goede eerste indruk van de architectuur van het betreffende product te geven. Boven-

dien konden we tegemoet komen aan de wens van de auditors om langzaam af te dalen

naar steeds gedetailleerdere informatie door bij vervolgsuggesties rekening te houden

met de ‘afstand’ tussen het eerder gelezen document en nog te lezen documenten.

Om de validiteit van onze leeswijzer te bepalen, hebben we de nabijheid van docu-

menten in het LSA-model vergeleken met de nabijheid van documenten volgens twee

auditors. Hiervoor hebben we de individuele mentale modellen bepaald die deze twee

auditors van de documenten hadden. Na correlatieberekeningen bleek dat er weliswaar

verschillen zijn tussen het mathematische documentenmodel van LSA en de mentale

documentenmodellen van de twee auditors, maar dat LSA niet meer afwijkt van de

auditors dan de auditors onderling. Mensen blijken dus ook ten opzichte van elkaar op

verschillende manieren naar dezelfde verzameling documenten te kijken.

In een vervolgstudie hebben we gekeken naar de verschillende mentale documen-

tenmodellen binnen één ontwikkelteam. Hieruit kwam het beeld naar voren van een

bekend kinderspelletje waarin kinderen in een ketting een woord doorfluisteren. Wie

dit spel weleens gespeeld heeft weet dat het woord dat het laatste kind hoort nooit het-

zelfde is als het woord dat het eerste kind werd ingefluisterd. Zoals het woord in de

fluisterketting steeds een beetje verandert, zo veranderde ook het mentale model van

de documenten in het ontwikkelteam. Auditors maken geen deel uit van het ontwikkel-

team, en staan dus volledig buiten de fluisterketting van documenten. Juist de locatie

in deze ketting lijkt het begrip van de softwaredocumentatie te bepalen. Technische

oplossingen om auditors te ondersteunen kunnen dan ook niet meer zijn dan onder-

steuning: een waardevol hulpmiddel, maar geen eindoplossing. Auditors moeten in

contact komen met de softwareleverancier, en praten met leden van het ontwikkelteam.

Het ontwikkelen van kwalitatief hoogwaardige software is niet slechts een kwestie van

techniek; het is evenzeer een kwestie van mensen.
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with Performing Architecture Tradeoff Analysis. In 21st International Conference

on Software Engineering (ICSE), pages 54–63, Los Angeles, CA, USA, 1999. ACM.

Cited on page 232.

Keim, D., G. Andrienko, J.-D. Fekete, C. Goerg, J. Kohlhammer, and G. Melancon.

Visual analytics: Definition, process, and challenges. In Information Visualization

- Human-Centered Issues and Perspectives (eds. A. Kerren et al.), pages 154–175.

Springer, 2008. Cited on page 261.

Kelly, G. A. The Psychology of Personal Constructs. Norton, New York, 1955. Cited

on pages 282 and 297.

Kerschberg, L. and H. Jeong. Just-in-Time Knowledge Management. In Professional

Knowledge Management, volume 3782, pages 1–18. Springer Berlin / Heidelberg,

2005. Cited on page 146.

349



BIBLIOGRAPHY

Kitchenham, B. Procedures for Performing Systematic Reviews. Technical Report

TR/SE-0401, Keele University / NICTA, July 2004. Cited on page 39.

Kitchenham, B. and S. Pfleeger. Principles of Survey Research, Parts 1 to 6. ACM

SIGSOFT Software Engineering Notes, 2001-2002. Cited on pages 100 and 184.

Kitchenham, B. A., S. L. Pfleeger, D. C. Hoaglin, and J. Rosenberg. Preliminary Guide-

lines for Empirical Research in Software Engineering. IEEE transactions on Soft-

ware Engineering, 28(8), 2002. Cited on page 199.

Klimoski, R. and S. Mohammed. Team Mental Model: Construct or Metaphor? Jour-

nal of Management, 20(2):403–437, 1994. Cited on page 300.

Kock, N. The three threats of action research: a discussion of methodological antidotes

in the context of an information systems study. Decision Support Systems, 37(2),

2004. Cited on page 206.

Kozaczynski, W. Requirements, Architectures and Risks. In 10th Anniversary Joint

IEEE International Requirements Engineering Conference (RE), page 6, 2002. Cited

on page 226.

Kristen, G. Object Orientation: The KISS Method. Academic Service, 1995. Cited on

page 51.

Kruchten, P. The Architects - The Software Architecture Team. In WICSA1, pages

565–584. Cited on page 195.

Kruchten, P. An Ontology of Architectural Design Decisions in Software-Intensive

Systems. In 2nd Groningen Workshop on Software Variability Management, Gronin-

gen, NL, 2004. Cited on pages 30, 70, 73, 225, 233, 235, 239, 240, and 262.

Kruchten, P. What do Software Architects Really do? The Journal of Systems and

Software, 81:2413–2416, 2008. Cited on page 177.

Kruchten, P., P. Lago, H. van Vliet, and T. Wolf. Building up and Exploiting Architec-

tural Knowledge. In WICSA 2005, pages 291–292. Cited on pages 19 and 20.

Kruchten, P., P. Lago, and H. van Vliet. Building Up and Reasoning About Architec-

tural Knowledge. In QoSA 2006, pages 43–58. Cited on pages 16, 19, and 20.

Kruchten, P., H. Obbink, and J. Stafford. The Past, Present, and Future for Software

Architecture. IEEE Software, 23(2):22–30, 2006b. Cited on page 19.

350



BIBLIOGRAPHY

Kruchten, P., R. Capilla, and J. C. Dueñas. The Decision View’s Role in Software
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